Thomas R. Cech, Chen Davidovich, Richard G. Jenner
{"title":"PRC2-RNA 相互作用:Tom Cech、Chen Davidovich 和 Richard Jenner 的观点","authors":"Thomas R. Cech, Chen Davidovich, Richard G. Jenner","doi":"10.1016/j.molcel.2024.09.010","DOIUrl":null,"url":null,"abstract":"Diverse biochemical, structural, and <em>in vivo</em> data support models for the regulation of polycomb repressive complex 2 (PRC2) activity by RNAs, which may contribute to the maintenance of epigenetic states. Here, we summarize this research and also suggest why it can be difficult to capture biologically relevant PRC2-RNA interactions in living cells.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"77 1","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PRC2-RNA interactions: Viewpoint from Tom Cech, Chen Davidovich, and Richard Jenner\",\"authors\":\"Thomas R. Cech, Chen Davidovich, Richard G. Jenner\",\"doi\":\"10.1016/j.molcel.2024.09.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diverse biochemical, structural, and <em>in vivo</em> data support models for the regulation of polycomb repressive complex 2 (PRC2) activity by RNAs, which may contribute to the maintenance of epigenetic states. Here, we summarize this research and also suggest why it can be difficult to capture biologically relevant PRC2-RNA interactions in living cells.\",\"PeriodicalId\":18950,\"journal\":{\"name\":\"Molecular Cell\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molcel.2024.09.010\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2024.09.010","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
PRC2-RNA interactions: Viewpoint from Tom Cech, Chen Davidovich, and Richard Jenner
Diverse biochemical, structural, and in vivo data support models for the regulation of polycomb repressive complex 2 (PRC2) activity by RNAs, which may contribute to the maintenance of epigenetic states. Here, we summarize this research and also suggest why it can be difficult to capture biologically relevant PRC2-RNA interactions in living cells.
期刊介绍:
Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.