利用离体人肺X光片的独特特征提高肺移植预后的准确性

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Bonnie T. Chao, Andrew T. Sage, Micheal C. McInnis, Jun Ma, Micah Grubert Van Iderstine, Xuanzi Zhou, Jerome Valero, Marcelo Cypel, Mingyao Liu, Bo Wang, Shaf Keshavjee
{"title":"利用离体人肺X光片的独特特征提高肺移植预后的准确性","authors":"Bonnie T. Chao, Andrew T. Sage, Micheal C. McInnis, Jun Ma, Micah Grubert Van Iderstine, Xuanzi Zhou, Jerome Valero, Marcelo Cypel, Mingyao Liu, Bo Wang, Shaf Keshavjee","doi":"10.1038/s41746-024-01260-z","DOIUrl":null,"url":null,"abstract":"Ex vivo lung perfusion (EVLP) enables advanced assessment of human lungs for transplant suitability. We developed a convolutional neural network (CNN)-based approach to analyze the largest cohort of isolated lung radiographs to date. CNNs were trained to process 1300 longitudinal radiographs from n = 650 clinical EVLP cases. Latent features were transformed into principal components (PC) and correlated with known radiographic findings. PCs were combined with physiological data to classify clinical outcomes: (1) recipient time to extubation of <72 h, (2) ≥ 72 h, and (3) lungs unsuitable for transplantation. The top PC was significantly correlated with infiltration (Spearman R: 0·72, p < 0·0001), and adding radiographic PCs significantly improved the discrimination for clinical outcomes (Accuracy: 73 vs 78%, p = 0·014). CNN-derived radiographic lung features therefore add substantial value to the current assessments. This approach can be adopted by EVLP centers worldwide to harness radiographic information without requiring real-time radiological expertise.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":" ","pages":"1-7"},"PeriodicalIF":12.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41746-024-01260-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Improving prognostic accuracy in lung transplantation using unique features of isolated human lung radiographs\",\"authors\":\"Bonnie T. Chao, Andrew T. Sage, Micheal C. McInnis, Jun Ma, Micah Grubert Van Iderstine, Xuanzi Zhou, Jerome Valero, Marcelo Cypel, Mingyao Liu, Bo Wang, Shaf Keshavjee\",\"doi\":\"10.1038/s41746-024-01260-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ex vivo lung perfusion (EVLP) enables advanced assessment of human lungs for transplant suitability. We developed a convolutional neural network (CNN)-based approach to analyze the largest cohort of isolated lung radiographs to date. CNNs were trained to process 1300 longitudinal radiographs from n = 650 clinical EVLP cases. Latent features were transformed into principal components (PC) and correlated with known radiographic findings. PCs were combined with physiological data to classify clinical outcomes: (1) recipient time to extubation of <72 h, (2) ≥ 72 h, and (3) lungs unsuitable for transplantation. The top PC was significantly correlated with infiltration (Spearman R: 0·72, p < 0·0001), and adding radiographic PCs significantly improved the discrimination for clinical outcomes (Accuracy: 73 vs 78%, p = 0·014). CNN-derived radiographic lung features therefore add substantial value to the current assessments. This approach can be adopted by EVLP centers worldwide to harness radiographic information without requiring real-time radiological expertise.\",\"PeriodicalId\":19349,\"journal\":{\"name\":\"NPJ Digital Medicine\",\"volume\":\" \",\"pages\":\"1-7\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41746-024-01260-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Digital Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41746-024-01260-z\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41746-024-01260-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

体外肺灌注(EVLP)可对人体肺部的移植适宜性进行高级评估。我们开发了一种基于卷积神经网络(CNN)的方法,用于分析迄今为止最大的一组离体肺部X光片。对 CNN 进行了训练,以处理来自 n = 650 个临床 EVLP 病例的 1300 张纵向射线照片。潜在特征被转化为主成分(PC),并与已知的放射学结果相关联。主成分与生理数据相结合,对临床结果进行分类:(1) 受体拔管时间为 72 小时;(2) ≥ 72 小时;(3) 肺部不适合移植。最高 PC 与浸润有明显相关性(Spearman R:0-72,p <0-0001),增加放射学 PC 能明显提高对临床结果的判别能力(准确率:73 vs 78%,p = 0-014)。因此,CNN 导出的肺部放射学特征为当前评估增添了大量价值。世界各地的 EVLP 中心都可以采用这种方法来利用放射学信息,而无需实时放射学专业知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Improving prognostic accuracy in lung transplantation using unique features of isolated human lung radiographs

Improving prognostic accuracy in lung transplantation using unique features of isolated human lung radiographs
Ex vivo lung perfusion (EVLP) enables advanced assessment of human lungs for transplant suitability. We developed a convolutional neural network (CNN)-based approach to analyze the largest cohort of isolated lung radiographs to date. CNNs were trained to process 1300 longitudinal radiographs from n = 650 clinical EVLP cases. Latent features were transformed into principal components (PC) and correlated with known radiographic findings. PCs were combined with physiological data to classify clinical outcomes: (1) recipient time to extubation of <72 h, (2) ≥ 72 h, and (3) lungs unsuitable for transplantation. The top PC was significantly correlated with infiltration (Spearman R: 0·72, p < 0·0001), and adding radiographic PCs significantly improved the discrimination for clinical outcomes (Accuracy: 73 vs 78%, p = 0·014). CNN-derived radiographic lung features therefore add substantial value to the current assessments. This approach can be adopted by EVLP centers worldwide to harness radiographic information without requiring real-time radiological expertise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信