Yifan Wang;Hisao Ishibuchi;Witold Pedrycz;Jihua Zhu;Xiangyong Cao;Jun Wang
{"title":"用于图像分类的具有随机权重的卷积模糊神经网络","authors":"Yifan Wang;Hisao Ishibuchi;Witold Pedrycz;Jihua Zhu;Xiangyong Cao;Jun Wang","doi":"10.1109/TETCI.2024.3375019","DOIUrl":null,"url":null,"abstract":"Deep fuzzy neural networks have established a fundamental connection between fuzzy systems and deep learning networks, serving as a crucial bridge between two research fields in computational intelligence. These hybrid networks have powerful learning capability stemming from deep neural networks while leveraging the advantages of fuzzy systems, such as robustness. Due to these benefits, deep fuzzy neural networks have recently been an emerging topic in computational intelligence. With the help of deep learning, fuzzy systems have achieved great performance on the classification task. Although fuzzy systems have been extensively investigated, they still struggle in terms of image classification. In this paper, we propose a convolutional fuzzy neural network that combines improved convolutional neural networks with a fuzzy-set-based fusion technique. Different from convolutional neural networks, filters are randomly generated in convolutional layers in our model. This operation not only leads to the fast learning of the model but also avoids some notorious problems of gradient descent procedures in conventional deep learning methods. Extensive experiments demonstrate that the proposed approach is competitive with state-of-the-art fuzzy models and deep learning models. Compared to classical deep models that require massive training data, the proposed approach works well on small datasets.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"8 5","pages":"3279-3293"},"PeriodicalIF":5.3000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convolutional Fuzzy Neural Networks With Random Weights for Image Classification\",\"authors\":\"Yifan Wang;Hisao Ishibuchi;Witold Pedrycz;Jihua Zhu;Xiangyong Cao;Jun Wang\",\"doi\":\"10.1109/TETCI.2024.3375019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep fuzzy neural networks have established a fundamental connection between fuzzy systems and deep learning networks, serving as a crucial bridge between two research fields in computational intelligence. These hybrid networks have powerful learning capability stemming from deep neural networks while leveraging the advantages of fuzzy systems, such as robustness. Due to these benefits, deep fuzzy neural networks have recently been an emerging topic in computational intelligence. With the help of deep learning, fuzzy systems have achieved great performance on the classification task. Although fuzzy systems have been extensively investigated, they still struggle in terms of image classification. In this paper, we propose a convolutional fuzzy neural network that combines improved convolutional neural networks with a fuzzy-set-based fusion technique. Different from convolutional neural networks, filters are randomly generated in convolutional layers in our model. This operation not only leads to the fast learning of the model but also avoids some notorious problems of gradient descent procedures in conventional deep learning methods. Extensive experiments demonstrate that the proposed approach is competitive with state-of-the-art fuzzy models and deep learning models. Compared to classical deep models that require massive training data, the proposed approach works well on small datasets.\",\"PeriodicalId\":13135,\"journal\":{\"name\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"volume\":\"8 5\",\"pages\":\"3279-3293\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10476629/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10476629/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Convolutional Fuzzy Neural Networks With Random Weights for Image Classification
Deep fuzzy neural networks have established a fundamental connection between fuzzy systems and deep learning networks, serving as a crucial bridge between two research fields in computational intelligence. These hybrid networks have powerful learning capability stemming from deep neural networks while leveraging the advantages of fuzzy systems, such as robustness. Due to these benefits, deep fuzzy neural networks have recently been an emerging topic in computational intelligence. With the help of deep learning, fuzzy systems have achieved great performance on the classification task. Although fuzzy systems have been extensively investigated, they still struggle in terms of image classification. In this paper, we propose a convolutional fuzzy neural network that combines improved convolutional neural networks with a fuzzy-set-based fusion technique. Different from convolutional neural networks, filters are randomly generated in convolutional layers in our model. This operation not only leads to the fast learning of the model but also avoids some notorious problems of gradient descent procedures in conventional deep learning methods. Extensive experiments demonstrate that the proposed approach is competitive with state-of-the-art fuzzy models and deep learning models. Compared to classical deep models that require massive training data, the proposed approach works well on small datasets.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.