延迟分阶复值反应扩散神经网络的自适应策略及其在 Mittag-Leffler 同步中的应用

IF 5.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
G. Narayanan;M. Syed Ali;Rajagopal Karthikeyan;Grienggrai Rajchakit;Sumaya Sanober;Pankaj Kumar
{"title":"延迟分阶复值反应扩散神经网络的自适应策略及其在 Mittag-Leffler 同步中的应用","authors":"G. Narayanan;M. Syed Ali;Rajagopal Karthikeyan;Grienggrai Rajchakit;Sumaya Sanober;Pankaj Kumar","doi":"10.1109/TETCI.2024.3375450","DOIUrl":null,"url":null,"abstract":"This paper addresses the Mittag-Leffler synchronization problem of fractional-order reaction-diffusion complex-valued neural networks (FRDCVNNs) with delays. New Mittag-Leffler synchronization (MLS) criteria in the form of the \n<inline-formula><tex-math>$p$</tex-math></inline-formula>\n-norm for an error model derived from the drive-response model are constructed. In the design of the adaptive feedback controller, the Lyapunov approach is considered in the framework of the \n<inline-formula><tex-math>$p$</tex-math></inline-formula>\n-norm technique, and less conservative algebraic conditions that guarantee MLS for the considered model are given. Moreover, the MLS of the considered model without reaction diffusion effect is investigated using adaptive control. Finally, an example is used to validate the proposed control scheme. To demonstrate the advantages and superiority of the proposed technique over existing methods, an image encryption method based on MLS of FRDCVNNs is considered and solved using the proposed method.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"8 5","pages":"3294-3307"},"PeriodicalIF":5.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Strategies and its Application in the Mittag-Leffler Synchronization of Delayed Fractional-Order Complex-Valued Reaction-Diffusion Neural Networks\",\"authors\":\"G. Narayanan;M. Syed Ali;Rajagopal Karthikeyan;Grienggrai Rajchakit;Sumaya Sanober;Pankaj Kumar\",\"doi\":\"10.1109/TETCI.2024.3375450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the Mittag-Leffler synchronization problem of fractional-order reaction-diffusion complex-valued neural networks (FRDCVNNs) with delays. New Mittag-Leffler synchronization (MLS) criteria in the form of the \\n<inline-formula><tex-math>$p$</tex-math></inline-formula>\\n-norm for an error model derived from the drive-response model are constructed. In the design of the adaptive feedback controller, the Lyapunov approach is considered in the framework of the \\n<inline-formula><tex-math>$p$</tex-math></inline-formula>\\n-norm technique, and less conservative algebraic conditions that guarantee MLS for the considered model are given. Moreover, the MLS of the considered model without reaction diffusion effect is investigated using adaptive control. Finally, an example is used to validate the proposed control scheme. To demonstrate the advantages and superiority of the proposed technique over existing methods, an image encryption method based on MLS of FRDCVNNs is considered and solved using the proposed method.\",\"PeriodicalId\":13135,\"journal\":{\"name\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"volume\":\"8 5\",\"pages\":\"3294-3307\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10485483/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10485483/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了带延迟的分数阶反应扩散复值神经网络(FRDCVNN)的米塔格-勒弗勒同步问题。针对从驱动-响应模型导出的误差模型,以 $p$ 准则的形式构建了新的 Mittag-Leffler 同步 (MLS) 准则。在自适应反馈控制器的设计中,考虑了在 $p$ norm 技术框架下的 Lyapunov 方法,并给出了保证所考虑模型 MLS 的不太保守的代数条件。此外,还利用自适应控制研究了无反应扩散效应模型的 MLS。最后,通过一个实例验证了所提出的控制方案。为了证明所提技术相对于现有方法的优势和优越性,我们考虑了一种基于 FRDCVNNs MLS 的图像加密方法,并使用所提方法进行了求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Strategies and its Application in the Mittag-Leffler Synchronization of Delayed Fractional-Order Complex-Valued Reaction-Diffusion Neural Networks
This paper addresses the Mittag-Leffler synchronization problem of fractional-order reaction-diffusion complex-valued neural networks (FRDCVNNs) with delays. New Mittag-Leffler synchronization (MLS) criteria in the form of the $p$ -norm for an error model derived from the drive-response model are constructed. In the design of the adaptive feedback controller, the Lyapunov approach is considered in the framework of the $p$ -norm technique, and less conservative algebraic conditions that guarantee MLS for the considered model are given. Moreover, the MLS of the considered model without reaction diffusion effect is investigated using adaptive control. Finally, an example is used to validate the proposed control scheme. To demonstrate the advantages and superiority of the proposed technique over existing methods, an image encryption method based on MLS of FRDCVNNs is considered and solved using the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
7.50%
发文量
147
期刊介绍: The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys. TETCI is an electronics only publication. TETCI publishes six issues per year. Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信