J. Innerarity Imizcoz , W. Djema , F. Mairet , J.-L. Gouzé
{"title":"周期性养分波动下微生物的最佳资源分配。","authors":"J. Innerarity Imizcoz , W. Djema , F. Mairet , J.-L. Gouzé","doi":"10.1016/j.jtbi.2024.111953","DOIUrl":null,"url":null,"abstract":"<div><div>Although microorganisms often live in dynamic environments, most studies, both experimental and theoretical, are carried out under static conditions. In this work, we investigate the issue of optimal resource allocation in bacteria growing in periodic environments. We consider a dynamic model describing the microbial metabolism under varying conditions, involving a control variable quantifying the protein precursors allocation. Our objective is to determine the optimal strategies maximizing the long-term growth of cells under a piecewise-constant periodic environment. Firstly, we perform a theoretical analysis of the resulting optimal control problem (OCP), based on the application the Pontryagin’s Maximum Principle (PMP). We determine that the structure of the optimal control must be bang–bang, with possibly some singular arcs corresponding to optimal equilibria of the system. If the control presents singular arcs, then these can only be reached and left through chattering arcs. We also use a direct optimization method, implemented in the <span>BOCOP</span> software, to solve the studied OCP. Our study reveals that the optimal solution over a large time horizon is related to the one over a single period of the varying environment with periodic constraints. Moreover, we observe that the maximal average growth rate attainable under periodic conditions can be higher than the one under a constant environment. We further extend our analysis to conduct a qualitative comparison between the predictions from our model and some recent biological experiments on <em>E. coli</em>. This analysis particularly highlights the mechanisms of action of the ppGpp signaling molecule, thus providing relevant explanations of the experimental observations. In conclusion, our study corroborates previous research indicating that this molecule plays a crucial role in the regulation of resource allocation of protein precursors in <em>E. coli</em>.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal resource allocation in micro-organisms under periodic nutrient fluctuations\",\"authors\":\"J. Innerarity Imizcoz , W. Djema , F. Mairet , J.-L. Gouzé\",\"doi\":\"10.1016/j.jtbi.2024.111953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Although microorganisms often live in dynamic environments, most studies, both experimental and theoretical, are carried out under static conditions. In this work, we investigate the issue of optimal resource allocation in bacteria growing in periodic environments. We consider a dynamic model describing the microbial metabolism under varying conditions, involving a control variable quantifying the protein precursors allocation. Our objective is to determine the optimal strategies maximizing the long-term growth of cells under a piecewise-constant periodic environment. Firstly, we perform a theoretical analysis of the resulting optimal control problem (OCP), based on the application the Pontryagin’s Maximum Principle (PMP). We determine that the structure of the optimal control must be bang–bang, with possibly some singular arcs corresponding to optimal equilibria of the system. If the control presents singular arcs, then these can only be reached and left through chattering arcs. We also use a direct optimization method, implemented in the <span>BOCOP</span> software, to solve the studied OCP. Our study reveals that the optimal solution over a large time horizon is related to the one over a single period of the varying environment with periodic constraints. Moreover, we observe that the maximal average growth rate attainable under periodic conditions can be higher than the one under a constant environment. We further extend our analysis to conduct a qualitative comparison between the predictions from our model and some recent biological experiments on <em>E. coli</em>. This analysis particularly highlights the mechanisms of action of the ppGpp signaling molecule, thus providing relevant explanations of the experimental observations. In conclusion, our study corroborates previous research indicating that this molecule plays a crucial role in the regulation of resource allocation of protein precursors in <em>E. coli</em>.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022519324002388\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022519324002388","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimal resource allocation in micro-organisms under periodic nutrient fluctuations
Although microorganisms often live in dynamic environments, most studies, both experimental and theoretical, are carried out under static conditions. In this work, we investigate the issue of optimal resource allocation in bacteria growing in periodic environments. We consider a dynamic model describing the microbial metabolism under varying conditions, involving a control variable quantifying the protein precursors allocation. Our objective is to determine the optimal strategies maximizing the long-term growth of cells under a piecewise-constant periodic environment. Firstly, we perform a theoretical analysis of the resulting optimal control problem (OCP), based on the application the Pontryagin’s Maximum Principle (PMP). We determine that the structure of the optimal control must be bang–bang, with possibly some singular arcs corresponding to optimal equilibria of the system. If the control presents singular arcs, then these can only be reached and left through chattering arcs. We also use a direct optimization method, implemented in the BOCOP software, to solve the studied OCP. Our study reveals that the optimal solution over a large time horizon is related to the one over a single period of the varying environment with periodic constraints. Moreover, we observe that the maximal average growth rate attainable under periodic conditions can be higher than the one under a constant environment. We further extend our analysis to conduct a qualitative comparison between the predictions from our model and some recent biological experiments on E. coli. This analysis particularly highlights the mechanisms of action of the ppGpp signaling molecule, thus providing relevant explanations of the experimental observations. In conclusion, our study corroborates previous research indicating that this molecule plays a crucial role in the regulation of resource allocation of protein precursors in E. coli.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.