Angela C C Jochems, Susana Muñoz Maniega, Una Clancy, Carmen Arteaga Reyes, Daniela Jaime Garcia, Maria Del C Valdés Hernández, Francesca M Chappell, Gayle Barclay, Charlotte Jardine, Donna McIntyre, Iona Gerrish, Stewart Wiseman, Michael S Stringer, Michael J Thrippleton, Fergus Doubal, Joanna M Wardlaw
{"title":"白质高密度变化的定义:对进展和回归估计值的影响。","authors":"Angela C C Jochems, Susana Muñoz Maniega, Una Clancy, Carmen Arteaga Reyes, Daniela Jaime Garcia, Maria Del C Valdés Hernández, Francesca M Chappell, Gayle Barclay, Charlotte Jardine, Donna McIntyre, Iona Gerrish, Stewart Wiseman, Michael S Stringer, Michael J Thrippleton, Fergus Doubal, Joanna M Wardlaw","doi":"10.1136/svn-2024-003300","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>White matter hyperintensity (WMH) progression is well documented; WMH regression is more contentious, which might reflect differences in defining WMH change. We compared four existing WMH change definitions in one population to determine the effect of definition on WMH regression.</p><p><strong>Methods: </strong>We recruited patients with minor non-disabling ischaemic stroke who underwent MRI 1-3 months after stroke and 1 year later. We assessed WMH volume (in absolute mL and % intracranial volume) and applied four different definitions, including two thresholds (based on SD or mL), percentile and quintile approaches.</p><p><strong>Results: </strong>In 198 participants, mean age 65.5 (SD=11.13), baseline WMH volume was 15.46 mL (SD=19.2), the mean net WMH volume change was 0.98 mL (SD=2.84), range -7.98 to +12.84 mL. Proportion regressing/stable/progressing WMH were threshold 1 (SD), 29.8%/55.6%/14.6%; threshold 2(mL), 29.8%/16.7%/53.5%; percentile approach, 28.3%/21.2%/50.5%. The quintile approach includes five groups with quintile 3 reflecting no change (N=40), quintiles 1 and 2 any WMH decrease (N=80) and quintiles 4 and 5 any WMH increase (N=78).</p><p><strong>Conclusions: </strong>Different WMH change definitions cause big differences in how participants are categorised; additionally, non-normal WMH distribution precludes use of some definitions. Consistent use of an appropriate definition would facilitate data comparisons, particularly in clinical trials of potential WMH treatments.</p>","PeriodicalId":48733,"journal":{"name":"Journal of Investigative Medicine","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Definitions of white matter hyperintensity change: impact on estimates of progression and regression.\",\"authors\":\"Angela C C Jochems, Susana Muñoz Maniega, Una Clancy, Carmen Arteaga Reyes, Daniela Jaime Garcia, Maria Del C Valdés Hernández, Francesca M Chappell, Gayle Barclay, Charlotte Jardine, Donna McIntyre, Iona Gerrish, Stewart Wiseman, Michael S Stringer, Michael J Thrippleton, Fergus Doubal, Joanna M Wardlaw\",\"doi\":\"10.1136/svn-2024-003300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>White matter hyperintensity (WMH) progression is well documented; WMH regression is more contentious, which might reflect differences in defining WMH change. We compared four existing WMH change definitions in one population to determine the effect of definition on WMH regression.</p><p><strong>Methods: </strong>We recruited patients with minor non-disabling ischaemic stroke who underwent MRI 1-3 months after stroke and 1 year later. We assessed WMH volume (in absolute mL and % intracranial volume) and applied four different definitions, including two thresholds (based on SD or mL), percentile and quintile approaches.</p><p><strong>Results: </strong>In 198 participants, mean age 65.5 (SD=11.13), baseline WMH volume was 15.46 mL (SD=19.2), the mean net WMH volume change was 0.98 mL (SD=2.84), range -7.98 to +12.84 mL. Proportion regressing/stable/progressing WMH were threshold 1 (SD), 29.8%/55.6%/14.6%; threshold 2(mL), 29.8%/16.7%/53.5%; percentile approach, 28.3%/21.2%/50.5%. The quintile approach includes five groups with quintile 3 reflecting no change (N=40), quintiles 1 and 2 any WMH decrease (N=80) and quintiles 4 and 5 any WMH increase (N=78).</p><p><strong>Conclusions: </strong>Different WMH change definitions cause big differences in how participants are categorised; additionally, non-normal WMH distribution precludes use of some definitions. Consistent use of an appropriate definition would facilitate data comparisons, particularly in clinical trials of potential WMH treatments.</p>\",\"PeriodicalId\":48733,\"journal\":{\"name\":\"Journal of Investigative Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Investigative Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1136/svn-2024-003300\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Investigative Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/svn-2024-003300","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Definitions of white matter hyperintensity change: impact on estimates of progression and regression.
Background: White matter hyperintensity (WMH) progression is well documented; WMH regression is more contentious, which might reflect differences in defining WMH change. We compared four existing WMH change definitions in one population to determine the effect of definition on WMH regression.
Methods: We recruited patients with minor non-disabling ischaemic stroke who underwent MRI 1-3 months after stroke and 1 year later. We assessed WMH volume (in absolute mL and % intracranial volume) and applied four different definitions, including two thresholds (based on SD or mL), percentile and quintile approaches.
Results: In 198 participants, mean age 65.5 (SD=11.13), baseline WMH volume was 15.46 mL (SD=19.2), the mean net WMH volume change was 0.98 mL (SD=2.84), range -7.98 to +12.84 mL. Proportion regressing/stable/progressing WMH were threshold 1 (SD), 29.8%/55.6%/14.6%; threshold 2(mL), 29.8%/16.7%/53.5%; percentile approach, 28.3%/21.2%/50.5%. The quintile approach includes five groups with quintile 3 reflecting no change (N=40), quintiles 1 and 2 any WMH decrease (N=80) and quintiles 4 and 5 any WMH increase (N=78).
Conclusions: Different WMH change definitions cause big differences in how participants are categorised; additionally, non-normal WMH distribution precludes use of some definitions. Consistent use of an appropriate definition would facilitate data comparisons, particularly in clinical trials of potential WMH treatments.
期刊介绍:
Journal of Investigative Medicine (JIM) is the official publication of the American Federation for Medical Research. The journal is peer-reviewed and publishes high-quality original articles and reviews in the areas of basic, clinical, and translational medical research.
JIM publishes on all topics and specialty areas that are critical to the conduct of the entire spectrum of biomedical research: from the translation of clinical observations at the bedside, to basic and animal research to clinical research and the implementation of innovative medical care.