Hamza Bakhtiar, Marina N. Sharifi, Kyle T. Helzer, Yue Shi, Matthew L. Bootsma, Tianfu A. Shang, Matthew R. Chrostek, Tracy J. Berg, S. Carson Callahan, Viridiana Carreno, Grace C. Blitzer, Malinda T. West, Ruth M. O’Regan, Kari B. Wisinski, Martin Sjöström, Shuang G. Zhao
{"title":"TP53缺失的表型特征可预测对化疗的反应。","authors":"Hamza Bakhtiar, Marina N. Sharifi, Kyle T. Helzer, Yue Shi, Matthew L. Bootsma, Tianfu A. Shang, Matthew R. Chrostek, Tracy J. Berg, S. Carson Callahan, Viridiana Carreno, Grace C. Blitzer, Malinda T. West, Ruth M. O’Regan, Kari B. Wisinski, Martin Sjöström, Shuang G. Zhao","doi":"10.1038/s41698-024-00722-7","DOIUrl":null,"url":null,"abstract":"In preclinical studies, p53 loss of function impacts chemotherapy response, but this has not been consistently validated clinically. We trained a TP53-loss phenocopy gene expression signature from pan-cancer clinical samples in the TCGA. In vitro, the TP53-loss phenocopy signature predicted chemotherapy response across cancer types. In a clinical dataset of 3003 breast cancer samples treated with neoadjuvant chemotherapy, the TP53-loss phenocopy samples were 56% more likely to have a pathologic complete response (pCR), with a significant association between TP53-loss phenocopy and pCR in both ER positive and ER negative tumors. In an independent clinical validation in the I-SPY2 trial (N = 987), we confirmed the association with neoadjuvant chemotherapy pCR and found higher rates of chemoimmunotherapy response in TP53-loss phenocopy tumors compared to non-TP53-loss phenocopy tumors (64% vs. 28%). The TP53-loss phenocopy signature predicts chemotherapy response across cancer types in vitro, and in a proof-of-concept clinical validation is associated with neoadjuvant chemotherapy response across multiple clinical breast cancer cohorts.","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":" ","pages":"1-10"},"PeriodicalIF":6.8000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447220/pdf/","citationCount":"0","resultStr":"{\"title\":\"A phenocopy signature of TP53 loss predicts response to chemotherapy\",\"authors\":\"Hamza Bakhtiar, Marina N. Sharifi, Kyle T. Helzer, Yue Shi, Matthew L. Bootsma, Tianfu A. Shang, Matthew R. Chrostek, Tracy J. Berg, S. Carson Callahan, Viridiana Carreno, Grace C. Blitzer, Malinda T. West, Ruth M. O’Regan, Kari B. Wisinski, Martin Sjöström, Shuang G. Zhao\",\"doi\":\"10.1038/s41698-024-00722-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In preclinical studies, p53 loss of function impacts chemotherapy response, but this has not been consistently validated clinically. We trained a TP53-loss phenocopy gene expression signature from pan-cancer clinical samples in the TCGA. In vitro, the TP53-loss phenocopy signature predicted chemotherapy response across cancer types. In a clinical dataset of 3003 breast cancer samples treated with neoadjuvant chemotherapy, the TP53-loss phenocopy samples were 56% more likely to have a pathologic complete response (pCR), with a significant association between TP53-loss phenocopy and pCR in both ER positive and ER negative tumors. In an independent clinical validation in the I-SPY2 trial (N = 987), we confirmed the association with neoadjuvant chemotherapy pCR and found higher rates of chemoimmunotherapy response in TP53-loss phenocopy tumors compared to non-TP53-loss phenocopy tumors (64% vs. 28%). The TP53-loss phenocopy signature predicts chemotherapy response across cancer types in vitro, and in a proof-of-concept clinical validation is associated with neoadjuvant chemotherapy response across multiple clinical breast cancer cohorts.\",\"PeriodicalId\":19433,\"journal\":{\"name\":\"NPJ Precision Oncology\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447220/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Precision Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41698-024-00722-7\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41698-024-00722-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
A phenocopy signature of TP53 loss predicts response to chemotherapy
In preclinical studies, p53 loss of function impacts chemotherapy response, but this has not been consistently validated clinically. We trained a TP53-loss phenocopy gene expression signature from pan-cancer clinical samples in the TCGA. In vitro, the TP53-loss phenocopy signature predicted chemotherapy response across cancer types. In a clinical dataset of 3003 breast cancer samples treated with neoadjuvant chemotherapy, the TP53-loss phenocopy samples were 56% more likely to have a pathologic complete response (pCR), with a significant association between TP53-loss phenocopy and pCR in both ER positive and ER negative tumors. In an independent clinical validation in the I-SPY2 trial (N = 987), we confirmed the association with neoadjuvant chemotherapy pCR and found higher rates of chemoimmunotherapy response in TP53-loss phenocopy tumors compared to non-TP53-loss phenocopy tumors (64% vs. 28%). The TP53-loss phenocopy signature predicts chemotherapy response across cancer types in vitro, and in a proof-of-concept clinical validation is associated with neoadjuvant chemotherapy response across multiple clinical breast cancer cohorts.
期刊介绍:
Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.