Stefano Pasetto, Michael Montejo, Mohammad U Zahid, Marilin Rosa, Robert Gatenby, Pirmin Schlicke, Roberto Diaz, Heiko Enderling
{"title":"利用癌症活检组织的光谱空间分析校准肿瘤生长和侵袭参数。","authors":"Stefano Pasetto, Michael Montejo, Mohammad U Zahid, Marilin Rosa, Robert Gatenby, Pirmin Schlicke, Roberto Diaz, Heiko Enderling","doi":"10.1038/s41540-024-00439-0","DOIUrl":null,"url":null,"abstract":"<p><p>The reaction-diffusion equation is widely used in mathematical models of cancer. The calibration of model parameters based on limited clinical data is critical to using reaction-diffusion equation simulations for reliable predictions on a per-patient basis. Here, we focus on cell-level data as routinely available from tissue biopsies used for clinical cancer diagnosis. We analyze the spatial architecture in biopsy tissues stained with multiplex immunofluorescence. We derive a two-point correlation function and the corresponding spatial power spectral distribution. We show that this data-deduced power spectral distribution can fit the power spectrum of the solution of reaction-diffusion equations that can then identify patient-specific tumor growth and invasion rates. This approach allows the measurement of patient-specific critical tumor dynamical properties from routinely available biopsy material at a single snapshot in time.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447233/pdf/","citationCount":"0","resultStr":"{\"title\":\"Calibrating tumor growth and invasion parameters with spectral spatial analysis of cancer biopsy tissues.\",\"authors\":\"Stefano Pasetto, Michael Montejo, Mohammad U Zahid, Marilin Rosa, Robert Gatenby, Pirmin Schlicke, Roberto Diaz, Heiko Enderling\",\"doi\":\"10.1038/s41540-024-00439-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The reaction-diffusion equation is widely used in mathematical models of cancer. The calibration of model parameters based on limited clinical data is critical to using reaction-diffusion equation simulations for reliable predictions on a per-patient basis. Here, we focus on cell-level data as routinely available from tissue biopsies used for clinical cancer diagnosis. We analyze the spatial architecture in biopsy tissues stained with multiplex immunofluorescence. We derive a two-point correlation function and the corresponding spatial power spectral distribution. We show that this data-deduced power spectral distribution can fit the power spectrum of the solution of reaction-diffusion equations that can then identify patient-specific tumor growth and invasion rates. This approach allows the measurement of patient-specific critical tumor dynamical properties from routinely available biopsy material at a single snapshot in time.</p>\",\"PeriodicalId\":19345,\"journal\":{\"name\":\"NPJ Systems Biology and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447233/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Systems Biology and Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41540-024-00439-0\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-024-00439-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Calibrating tumor growth and invasion parameters with spectral spatial analysis of cancer biopsy tissues.
The reaction-diffusion equation is widely used in mathematical models of cancer. The calibration of model parameters based on limited clinical data is critical to using reaction-diffusion equation simulations for reliable predictions on a per-patient basis. Here, we focus on cell-level data as routinely available from tissue biopsies used for clinical cancer diagnosis. We analyze the spatial architecture in biopsy tissues stained with multiplex immunofluorescence. We derive a two-point correlation function and the corresponding spatial power spectral distribution. We show that this data-deduced power spectral distribution can fit the power spectrum of the solution of reaction-diffusion equations that can then identify patient-specific tumor growth and invasion rates. This approach allows the measurement of patient-specific critical tumor dynamical properties from routinely available biopsy material at a single snapshot in time.
期刊介绍:
npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology.
We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.