{"title":"cGAS-STING-干扰素调节因子 7 通路调节帕金森病的神经炎症。","authors":"Shengyang Zhou, Ting Li, Wei Zhang, Jian Wu, Hui Hong, Wei Quan, Xinyu Qiao, Chun Cui, Chenmeng Qiao, Weijiang Zhao, Yanqin Shen","doi":"10.4103/NRR.NRR-D-23-01684","DOIUrl":null,"url":null,"abstract":"<p><p>JOURNAL/nrgr/04.03/01300535-202508000-00026/figure1/v/2024-09-30T120553Z/r/image-tiff Interferon regulatory factor 7 plays a crucial role in the innate immune response. However, whether interferon regulatory factor 7-mediated signaling contributes to Parkinson's disease remains unknown. Here we report that interferon regulatory factor 7 is markedly up-regulated in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease and co-localizes with microglial cells. Both the selective cyclic guanosine monophosphate adenosine monophosphate synthase inhibitor RU.521 and the stimulator of interferon genes inhibitor H151 effectively suppressed interferon regulatory factor 7 activation in BV2 microglia exposed to 1-methyl-4-phenylpyridinium and inhibited transformation of mouse BV2 microglia into the neurotoxic M1 phenotype. In addition, siRNA-mediated knockdown of interferon regulatory factor 7 expression in BV2 microglia reduced the expression of inducible nitric oxide synthase, tumor necrosis factor α, CD16, CD32, and CD86 and increased the expression of the anti-inflammatory markers ARG1 and YM1. Taken together, our findings indicate that the cyclic guanosine monophosphate adenosine monophosphate synthase-stimulator of interferon genes-interferon regulatory factor 7 pathway plays a crucial role in the pathogenesis of Parkinson's disease.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":"20 8","pages":"2361-2372"},"PeriodicalIF":5.9000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The cGAS-STING-interferon regulatory factor 7 pathway regulates neuroinflammation in Parkinson's disease.\",\"authors\":\"Shengyang Zhou, Ting Li, Wei Zhang, Jian Wu, Hui Hong, Wei Quan, Xinyu Qiao, Chun Cui, Chenmeng Qiao, Weijiang Zhao, Yanqin Shen\",\"doi\":\"10.4103/NRR.NRR-D-23-01684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>JOURNAL/nrgr/04.03/01300535-202508000-00026/figure1/v/2024-09-30T120553Z/r/image-tiff Interferon regulatory factor 7 plays a crucial role in the innate immune response. However, whether interferon regulatory factor 7-mediated signaling contributes to Parkinson's disease remains unknown. Here we report that interferon regulatory factor 7 is markedly up-regulated in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease and co-localizes with microglial cells. Both the selective cyclic guanosine monophosphate adenosine monophosphate synthase inhibitor RU.521 and the stimulator of interferon genes inhibitor H151 effectively suppressed interferon regulatory factor 7 activation in BV2 microglia exposed to 1-methyl-4-phenylpyridinium and inhibited transformation of mouse BV2 microglia into the neurotoxic M1 phenotype. In addition, siRNA-mediated knockdown of interferon regulatory factor 7 expression in BV2 microglia reduced the expression of inducible nitric oxide synthase, tumor necrosis factor α, CD16, CD32, and CD86 and increased the expression of the anti-inflammatory markers ARG1 and YM1. Taken together, our findings indicate that the cyclic guanosine monophosphate adenosine monophosphate synthase-stimulator of interferon genes-interferon regulatory factor 7 pathway plays a crucial role in the pathogenesis of Parkinson's disease.</p>\",\"PeriodicalId\":19113,\"journal\":{\"name\":\"Neural Regeneration Research\",\"volume\":\"20 8\",\"pages\":\"2361-2372\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Regeneration Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4103/NRR.NRR-D-23-01684\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Regeneration Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/NRR.NRR-D-23-01684","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
The cGAS-STING-interferon regulatory factor 7 pathway regulates neuroinflammation in Parkinson's disease.
JOURNAL/nrgr/04.03/01300535-202508000-00026/figure1/v/2024-09-30T120553Z/r/image-tiff Interferon regulatory factor 7 plays a crucial role in the innate immune response. However, whether interferon regulatory factor 7-mediated signaling contributes to Parkinson's disease remains unknown. Here we report that interferon regulatory factor 7 is markedly up-regulated in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease and co-localizes with microglial cells. Both the selective cyclic guanosine monophosphate adenosine monophosphate synthase inhibitor RU.521 and the stimulator of interferon genes inhibitor H151 effectively suppressed interferon regulatory factor 7 activation in BV2 microglia exposed to 1-methyl-4-phenylpyridinium and inhibited transformation of mouse BV2 microglia into the neurotoxic M1 phenotype. In addition, siRNA-mediated knockdown of interferon regulatory factor 7 expression in BV2 microglia reduced the expression of inducible nitric oxide synthase, tumor necrosis factor α, CD16, CD32, and CD86 and increased the expression of the anti-inflammatory markers ARG1 and YM1. Taken together, our findings indicate that the cyclic guanosine monophosphate adenosine monophosphate synthase-stimulator of interferon genes-interferon regulatory factor 7 pathway plays a crucial role in the pathogenesis of Parkinson's disease.
期刊介绍:
Neural Regeneration Research (NRR) is the Open Access journal specializing in neural regeneration and indexed by SCI-E and PubMed. The journal is committed to publishing articles on basic pathobiology of injury, repair and protection to the nervous system, while considering preclinical and clinical trials targeted at improving traumatically injuried patients and patients with neurodegenerative diseases.