Safa Ben Atitallah, Maha Driss, Wadii Boulila, Anis Koubaa
{"title":"通过大数据和 \"少数几个镜头的集合学习 \"提高早期阿尔茨海默病的检测能力","authors":"Safa Ben Atitallah, Maha Driss, Wadii Boulila, Anis Koubaa","doi":"10.1109/JBHI.2024.3473541","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease is a severe brain disorder that causes harm in various brain areas and leads to memory damage. The limited availability of labeled medical data poses a significant challenge for accurate Alzheimer's disease detection. There is a critical need for effective methods to improve the accuracy of Alzheimer's disease detection, considering the scarcity of labeled data, the complexity of the disease, and the constraints related to data privacy. To address this challenge, our study leverages the power of Big Data in the form of pre-trained Convolutional Neural Networks (CNNs) within the framework of Few-Shot Learning (FSL) and ensemble learning. We propose an ensemble approach based on a Prototypical Network (ProtoNet), a powerful method in FSL, integrating various pre-trained CNNs as encoders. This integration enhances the richness of features extracted from medical images. Our approach also includes a combination of class-aware loss and entropy loss to ensure a more precise classification of Alzheimer's disease progression levels. The effectiveness of our method was evaluated using two datasets, the Kaggle Alzheimer dataset, and the ADNI dataset, achieving an accuracy of 99.72% and 99.86%, respectively. The comparison of our results with relevant state-of-the-art studies demonstrated that our approach achieved superior accuracy and highlighted its validity and potential for real-world applications in early Alzheimer's disease detection.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Early Alzheimer's Disease Detection Through Big Data and Ensemble Few-Shot Learning.\",\"authors\":\"Safa Ben Atitallah, Maha Driss, Wadii Boulila, Anis Koubaa\",\"doi\":\"10.1109/JBHI.2024.3473541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease is a severe brain disorder that causes harm in various brain areas and leads to memory damage. The limited availability of labeled medical data poses a significant challenge for accurate Alzheimer's disease detection. There is a critical need for effective methods to improve the accuracy of Alzheimer's disease detection, considering the scarcity of labeled data, the complexity of the disease, and the constraints related to data privacy. To address this challenge, our study leverages the power of Big Data in the form of pre-trained Convolutional Neural Networks (CNNs) within the framework of Few-Shot Learning (FSL) and ensemble learning. We propose an ensemble approach based on a Prototypical Network (ProtoNet), a powerful method in FSL, integrating various pre-trained CNNs as encoders. This integration enhances the richness of features extracted from medical images. Our approach also includes a combination of class-aware loss and entropy loss to ensure a more precise classification of Alzheimer's disease progression levels. The effectiveness of our method was evaluated using two datasets, the Kaggle Alzheimer dataset, and the ADNI dataset, achieving an accuracy of 99.72% and 99.86%, respectively. The comparison of our results with relevant state-of-the-art studies demonstrated that our approach achieved superior accuracy and highlighted its validity and potential for real-world applications in early Alzheimer's disease detection.</p>\",\"PeriodicalId\":13073,\"journal\":{\"name\":\"IEEE Journal of Biomedical and Health Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Biomedical and Health Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/JBHI.2024.3473541\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2024.3473541","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Enhancing Early Alzheimer's Disease Detection Through Big Data and Ensemble Few-Shot Learning.
Alzheimer's disease is a severe brain disorder that causes harm in various brain areas and leads to memory damage. The limited availability of labeled medical data poses a significant challenge for accurate Alzheimer's disease detection. There is a critical need for effective methods to improve the accuracy of Alzheimer's disease detection, considering the scarcity of labeled data, the complexity of the disease, and the constraints related to data privacy. To address this challenge, our study leverages the power of Big Data in the form of pre-trained Convolutional Neural Networks (CNNs) within the framework of Few-Shot Learning (FSL) and ensemble learning. We propose an ensemble approach based on a Prototypical Network (ProtoNet), a powerful method in FSL, integrating various pre-trained CNNs as encoders. This integration enhances the richness of features extracted from medical images. Our approach also includes a combination of class-aware loss and entropy loss to ensure a more precise classification of Alzheimer's disease progression levels. The effectiveness of our method was evaluated using two datasets, the Kaggle Alzheimer dataset, and the ADNI dataset, achieving an accuracy of 99.72% and 99.86%, respectively. The comparison of our results with relevant state-of-the-art studies demonstrated that our approach achieved superior accuracy and highlighted its validity and potential for real-world applications in early Alzheimer's disease detection.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.