Jianning Chi, Jia-Hui Chen, Bo Wu, Jin Zhao, Kai Wang, Xiaosheng Yu, Wenjun Zhang, Ying Huang
{"title":"基于超声波图像和对比增强超声波视频的甲状腺结节诊断双分支跨模态注意力网络","authors":"Jianning Chi, Jia-Hui Chen, Bo Wu, Jin Zhao, Kai Wang, Xiaosheng Yu, Wenjun Zhang, Ying Huang","doi":"10.1109/JBHI.2024.3472609","DOIUrl":null,"url":null,"abstract":"<p><p>Contrast-enhanced ultrasound (CEUS) has been extensively employed as an imaging modality in thyroid nodule diagnosis due to its capacity to visualise the distribution and circulation of micro-vessels in organs and lesions in a non-invasive manner. However, current CEUS-based thyroid nodule diagnosis methods suffered from: 1) the blurred spatial boundaries between nodules and other anatomies in CEUS videos, and 2) the insufficient representations of the local structural information of nodule tissues by the features extracted only from CEUS videos. In this paper, we propose a novel dual-branch network with a cross-modality-attention mechanism for thyroid nodule diagnosis by integrating the information from tow related modalities, i.e., CEUS videos and ultrasound image. The mechanism has two parts: US-attention-from-CEUS transformer (UAC-T) and CEUS-attention-from-US transformer (CAU-T). As such, this network imitates the manner of human radiologists by decomposing the diagnosis into two correlated tasks: 1) the spatio-temporal features extracted from CEUS are hierarchically embedded into the spatial features extracted from US with UAC-T for the nodule segmentation; 2) the US spatial features are used to guide the extraction of the CEUS spatio-temporal features with CAU-T for the nodule classification. The two tasks are intertwined in the dual-branch end-to-end network and optimized with the multi-task learning (MTL) strategy. The proposed method is evaluated on our collected thyroid US-CEUS dataset. Experimental results show that our method achieves the classification accuracy of 86.92%, specificity of 66.41%, and sensitivity of 97.01%, outperforming the state-of-the-art methods. As a general contribution in the field of multi-modality diagnosis of diseases, the proposed method has provided an effective way to combine static information with its related dynamic information, improving the quality of deep learning based diagnosis with an additional benefit of explainability.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Dual-Branch Cross-Modality-Attention Network for Thyroid Nodule Diagnosis Based on Ultrasound Images and Contrast-Enhanced Ultrasound Videos.\",\"authors\":\"Jianning Chi, Jia-Hui Chen, Bo Wu, Jin Zhao, Kai Wang, Xiaosheng Yu, Wenjun Zhang, Ying Huang\",\"doi\":\"10.1109/JBHI.2024.3472609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Contrast-enhanced ultrasound (CEUS) has been extensively employed as an imaging modality in thyroid nodule diagnosis due to its capacity to visualise the distribution and circulation of micro-vessels in organs and lesions in a non-invasive manner. However, current CEUS-based thyroid nodule diagnosis methods suffered from: 1) the blurred spatial boundaries between nodules and other anatomies in CEUS videos, and 2) the insufficient representations of the local structural information of nodule tissues by the features extracted only from CEUS videos. In this paper, we propose a novel dual-branch network with a cross-modality-attention mechanism for thyroid nodule diagnosis by integrating the information from tow related modalities, i.e., CEUS videos and ultrasound image. The mechanism has two parts: US-attention-from-CEUS transformer (UAC-T) and CEUS-attention-from-US transformer (CAU-T). As such, this network imitates the manner of human radiologists by decomposing the diagnosis into two correlated tasks: 1) the spatio-temporal features extracted from CEUS are hierarchically embedded into the spatial features extracted from US with UAC-T for the nodule segmentation; 2) the US spatial features are used to guide the extraction of the CEUS spatio-temporal features with CAU-T for the nodule classification. The two tasks are intertwined in the dual-branch end-to-end network and optimized with the multi-task learning (MTL) strategy. The proposed method is evaluated on our collected thyroid US-CEUS dataset. Experimental results show that our method achieves the classification accuracy of 86.92%, specificity of 66.41%, and sensitivity of 97.01%, outperforming the state-of-the-art methods. As a general contribution in the field of multi-modality diagnosis of diseases, the proposed method has provided an effective way to combine static information with its related dynamic information, improving the quality of deep learning based diagnosis with an additional benefit of explainability.</p>\",\"PeriodicalId\":13073,\"journal\":{\"name\":\"IEEE Journal of Biomedical and Health Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Biomedical and Health Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/JBHI.2024.3472609\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2024.3472609","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Dual-Branch Cross-Modality-Attention Network for Thyroid Nodule Diagnosis Based on Ultrasound Images and Contrast-Enhanced Ultrasound Videos.
Contrast-enhanced ultrasound (CEUS) has been extensively employed as an imaging modality in thyroid nodule diagnosis due to its capacity to visualise the distribution and circulation of micro-vessels in organs and lesions in a non-invasive manner. However, current CEUS-based thyroid nodule diagnosis methods suffered from: 1) the blurred spatial boundaries between nodules and other anatomies in CEUS videos, and 2) the insufficient representations of the local structural information of nodule tissues by the features extracted only from CEUS videos. In this paper, we propose a novel dual-branch network with a cross-modality-attention mechanism for thyroid nodule diagnosis by integrating the information from tow related modalities, i.e., CEUS videos and ultrasound image. The mechanism has two parts: US-attention-from-CEUS transformer (UAC-T) and CEUS-attention-from-US transformer (CAU-T). As such, this network imitates the manner of human radiologists by decomposing the diagnosis into two correlated tasks: 1) the spatio-temporal features extracted from CEUS are hierarchically embedded into the spatial features extracted from US with UAC-T for the nodule segmentation; 2) the US spatial features are used to guide the extraction of the CEUS spatio-temporal features with CAU-T for the nodule classification. The two tasks are intertwined in the dual-branch end-to-end network and optimized with the multi-task learning (MTL) strategy. The proposed method is evaluated on our collected thyroid US-CEUS dataset. Experimental results show that our method achieves the classification accuracy of 86.92%, specificity of 66.41%, and sensitivity of 97.01%, outperforming the state-of-the-art methods. As a general contribution in the field of multi-modality diagnosis of diseases, the proposed method has provided an effective way to combine static information with its related dynamic information, improving the quality of deep learning based diagnosis with an additional benefit of explainability.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.