Shu-Qin Ding , Hua-Zheng Yan , Jian-Xiong Gao , Yu-Qing Chen , Nan Zhang , Rui Wang , Jiang-Yan Li , Jian-Guo Hu , He-Zuo Lü
{"title":"在 LysM+ 巨噬细胞中遗传性缺失含有卡片的凋亡相关斑点样蛋白,可通过 ASC 依赖性炎症小体信号轴调节 M1/M2 极化,从而减轻脊髓损伤。","authors":"Shu-Qin Ding , Hua-Zheng Yan , Jian-Xiong Gao , Yu-Qing Chen , Nan Zhang , Rui Wang , Jiang-Yan Li , Jian-Guo Hu , He-Zuo Lü","doi":"10.1016/j.expneurol.2024.114982","DOIUrl":null,"url":null,"abstract":"<div><div>Apoptosis associated speck like protein containing a card (ASC), the key adaptor protein of the assembly and activation of canonical inflammasomes, has been found to play a significant role in neuroinflammation after spinal cord injury (SCI). The previous studies indicated that widely block or knockout ASC can ameliorate SCI. However, ASC is ubiquitously expressed in infiltrated macrophages and local microglia, so further exploration is needed on which type of cell playing the key role. In this study, using the LysM<sup>cre</sup>;Asc<sup>flox/flox</sup> mice with macrophage-specifc ASC conditional knockout (CKO) and contusive SCI model, we focus on evaluating the specific role of ASC in lysozyme 2 (LysM)<sup>+</sup> myeloid cells (mainly infiltrated macrophages) in this pathology. The results revealed that macrophage-specifc Asc CKO exhibited the follow effects: (1) A significant reduction in the numbers of infiltrated macrophages in the all phases of SCI, and activated microglia in the acute and subacute phases. (2) A significant reduction in ASC, caspase-1, interleukin (IL)-1β, and IL-18 compared to control mice. (3) In the acute and subacute phases of SCI, M1 subset differentiation was inhibited, and M2 differentiation was increased. (4) Histology and hindlimb motor recoveries were improved. In conclusion, this study elucidates that macrophage-specific ASC CKO can improve nerve function recovery after SCI by regulating M1/M2 polarization through inhibiting ASC-dependent inflammasome signaling axis. This indicates that ASC in peripheral infiltrated macrophages may play an important role in SCI pathology, at least in mice, could be a potential target for treatment.</div></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic deletion of the apoptosis associated speck like protein containing a card in LysM+ macrophages attenuates spinal cord injury by regulating M1/M2 polarization through ASC-dependent inflammasome signaling axis\",\"authors\":\"Shu-Qin Ding , Hua-Zheng Yan , Jian-Xiong Gao , Yu-Qing Chen , Nan Zhang , Rui Wang , Jiang-Yan Li , Jian-Guo Hu , He-Zuo Lü\",\"doi\":\"10.1016/j.expneurol.2024.114982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Apoptosis associated speck like protein containing a card (ASC), the key adaptor protein of the assembly and activation of canonical inflammasomes, has been found to play a significant role in neuroinflammation after spinal cord injury (SCI). The previous studies indicated that widely block or knockout ASC can ameliorate SCI. However, ASC is ubiquitously expressed in infiltrated macrophages and local microglia, so further exploration is needed on which type of cell playing the key role. In this study, using the LysM<sup>cre</sup>;Asc<sup>flox/flox</sup> mice with macrophage-specifc ASC conditional knockout (CKO) and contusive SCI model, we focus on evaluating the specific role of ASC in lysozyme 2 (LysM)<sup>+</sup> myeloid cells (mainly infiltrated macrophages) in this pathology. The results revealed that macrophage-specifc Asc CKO exhibited the follow effects: (1) A significant reduction in the numbers of infiltrated macrophages in the all phases of SCI, and activated microglia in the acute and subacute phases. (2) A significant reduction in ASC, caspase-1, interleukin (IL)-1β, and IL-18 compared to control mice. (3) In the acute and subacute phases of SCI, M1 subset differentiation was inhibited, and M2 differentiation was increased. (4) Histology and hindlimb motor recoveries were improved. In conclusion, this study elucidates that macrophage-specific ASC CKO can improve nerve function recovery after SCI by regulating M1/M2 polarization through inhibiting ASC-dependent inflammasome signaling axis. This indicates that ASC in peripheral infiltrated macrophages may play an important role in SCI pathology, at least in mice, could be a potential target for treatment.</div></div>\",\"PeriodicalId\":12246,\"journal\":{\"name\":\"Experimental Neurology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001448862400308X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001448862400308X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Genetic deletion of the apoptosis associated speck like protein containing a card in LysM+ macrophages attenuates spinal cord injury by regulating M1/M2 polarization through ASC-dependent inflammasome signaling axis
Apoptosis associated speck like protein containing a card (ASC), the key adaptor protein of the assembly and activation of canonical inflammasomes, has been found to play a significant role in neuroinflammation after spinal cord injury (SCI). The previous studies indicated that widely block or knockout ASC can ameliorate SCI. However, ASC is ubiquitously expressed in infiltrated macrophages and local microglia, so further exploration is needed on which type of cell playing the key role. In this study, using the LysMcre;Ascflox/flox mice with macrophage-specifc ASC conditional knockout (CKO) and contusive SCI model, we focus on evaluating the specific role of ASC in lysozyme 2 (LysM)+ myeloid cells (mainly infiltrated macrophages) in this pathology. The results revealed that macrophage-specifc Asc CKO exhibited the follow effects: (1) A significant reduction in the numbers of infiltrated macrophages in the all phases of SCI, and activated microglia in the acute and subacute phases. (2) A significant reduction in ASC, caspase-1, interleukin (IL)-1β, and IL-18 compared to control mice. (3) In the acute and subacute phases of SCI, M1 subset differentiation was inhibited, and M2 differentiation was increased. (4) Histology and hindlimb motor recoveries were improved. In conclusion, this study elucidates that macrophage-specific ASC CKO can improve nerve function recovery after SCI by regulating M1/M2 polarization through inhibiting ASC-dependent inflammasome signaling axis. This indicates that ASC in peripheral infiltrated macrophages may play an important role in SCI pathology, at least in mice, could be a potential target for treatment.
期刊介绍:
Experimental Neurology, a Journal of Neuroscience Research, publishes original research in neuroscience with a particular emphasis on novel findings in neural development, regeneration, plasticity and transplantation. The journal has focused on research concerning basic mechanisms underlying neurological disorders.