Muhammad Sami Ullah, Muhammad Attique Khan, Hussain Mobarak Albarakati, Robertas Damaševičius, Shrooq Alsenan
{"title":"基于可解释人工智能的优化 DeepLabV3+ 和解释网络信息融合的核磁共振成像扫描多模态脑肿瘤分割和分类。","authors":"Muhammad Sami Ullah, Muhammad Attique Khan, Hussain Mobarak Albarakati, Robertas Damaševičius, Shrooq Alsenan","doi":"10.1016/j.compbiomed.2024.109183","DOIUrl":null,"url":null,"abstract":"<p><p>Explainable artificial intelligence (XAI) aims to offer machine learning (ML) methods that enable people to comprehend, properly trust, and create more explainable models. In medical imaging, XAI has been adopted to interpret deep learning black box models to demonstrate the trustworthiness of machine decisions and predictions. In this work, we proposed a deep learning and explainable AI-based framework for segmenting and classifying brain tumors. The proposed framework consists of two parts. The first part, encoder-decoder-based DeepLabv3+ architecture, is implemented with Bayesian Optimization (BO) based hyperparameter initialization. The different scales are performed, and features are extracted through the Atrous Spatial Pyramid Pooling (ASPP) technique. The extracted features are passed to the output layer for tumor segmentation. In the second part of the proposed framework, two customized models have been proposed named Inverted Residual Bottleneck 96 layers (IRB-96) and Inverted Residual Bottleneck Self-Attention (IRB-Self). Both models are trained on the selected brain tumor datasets and extracted features from the global average pooling and self-attention layers. Features are fused using a serial approach, and classification is performed. The BO-based hyperparameters optimization of the neural network classifiers is performed and the classification results have been optimized. An XAI method named LIME is implemented to check the interpretability of the proposed models. The experimental process of the proposed framework was performed on the Figshare dataset, and an average segmentation accuracy of 92.68 % and classification accuracy of 95.42 % were obtained, respectively. Compared with state-of-the-art techniques, the proposed framework shows improved accuracy.</p>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"182 ","pages":"109183"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal brain tumor segmentation and classification from MRI scans based on optimized DeepLabV3+ and interpreted networks information fusion empowered with explainable AI.\",\"authors\":\"Muhammad Sami Ullah, Muhammad Attique Khan, Hussain Mobarak Albarakati, Robertas Damaševičius, Shrooq Alsenan\",\"doi\":\"10.1016/j.compbiomed.2024.109183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Explainable artificial intelligence (XAI) aims to offer machine learning (ML) methods that enable people to comprehend, properly trust, and create more explainable models. In medical imaging, XAI has been adopted to interpret deep learning black box models to demonstrate the trustworthiness of machine decisions and predictions. In this work, we proposed a deep learning and explainable AI-based framework for segmenting and classifying brain tumors. The proposed framework consists of two parts. The first part, encoder-decoder-based DeepLabv3+ architecture, is implemented with Bayesian Optimization (BO) based hyperparameter initialization. The different scales are performed, and features are extracted through the Atrous Spatial Pyramid Pooling (ASPP) technique. The extracted features are passed to the output layer for tumor segmentation. In the second part of the proposed framework, two customized models have been proposed named Inverted Residual Bottleneck 96 layers (IRB-96) and Inverted Residual Bottleneck Self-Attention (IRB-Self). Both models are trained on the selected brain tumor datasets and extracted features from the global average pooling and self-attention layers. Features are fused using a serial approach, and classification is performed. The BO-based hyperparameters optimization of the neural network classifiers is performed and the classification results have been optimized. An XAI method named LIME is implemented to check the interpretability of the proposed models. The experimental process of the proposed framework was performed on the Figshare dataset, and an average segmentation accuracy of 92.68 % and classification accuracy of 95.42 % were obtained, respectively. Compared with state-of-the-art techniques, the proposed framework shows improved accuracy.</p>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"182 \",\"pages\":\"109183\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.compbiomed.2024.109183\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.compbiomed.2024.109183","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Multimodal brain tumor segmentation and classification from MRI scans based on optimized DeepLabV3+ and interpreted networks information fusion empowered with explainable AI.
Explainable artificial intelligence (XAI) aims to offer machine learning (ML) methods that enable people to comprehend, properly trust, and create more explainable models. In medical imaging, XAI has been adopted to interpret deep learning black box models to demonstrate the trustworthiness of machine decisions and predictions. In this work, we proposed a deep learning and explainable AI-based framework for segmenting and classifying brain tumors. The proposed framework consists of two parts. The first part, encoder-decoder-based DeepLabv3+ architecture, is implemented with Bayesian Optimization (BO) based hyperparameter initialization. The different scales are performed, and features are extracted through the Atrous Spatial Pyramid Pooling (ASPP) technique. The extracted features are passed to the output layer for tumor segmentation. In the second part of the proposed framework, two customized models have been proposed named Inverted Residual Bottleneck 96 layers (IRB-96) and Inverted Residual Bottleneck Self-Attention (IRB-Self). Both models are trained on the selected brain tumor datasets and extracted features from the global average pooling and self-attention layers. Features are fused using a serial approach, and classification is performed. The BO-based hyperparameters optimization of the neural network classifiers is performed and the classification results have been optimized. An XAI method named LIME is implemented to check the interpretability of the proposed models. The experimental process of the proposed framework was performed on the Figshare dataset, and an average segmentation accuracy of 92.68 % and classification accuracy of 95.42 % were obtained, respectively. Compared with state-of-the-art techniques, the proposed framework shows improved accuracy.
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.