Irma Mahmutovic Persson, Gracijela Bozovic, Gunilla Westergren-Thorsson, Sara Rolandsson Enes
{"title":"临床和转化环境中的空间肺部成像。","authors":"Irma Mahmutovic Persson, Gracijela Bozovic, Gunilla Westergren-Thorsson, Sara Rolandsson Enes","doi":"10.1183/20734735.0224-2023","DOIUrl":null,"url":null,"abstract":"<p><p>For many severe lung diseases, non-invasive biomarkers from imaging could improve early detection of lung injury or disease onset, establish a diagnosis, or help follow-up disease progression and treatment strategies. Imaging of the thorax and lung is challenging due to its size, respiration movement, transferred cardiac pulsation, vast density range and gravitation sensitivity. However, there is extensive ongoing research in this fast-evolving field. Recent improvements in spatial imaging have allowed us to study the three-dimensional structure of the lung, providing both spatial architecture and transcriptomic information at single-cell resolution. This fast progression, however, comes with several challenges, including significant image file storage and network capacity issues, increased costs, data processing and analysis, the role of artificial intelligence and machine learning, and mechanisms to combine several modalities. In this review, we provide an overview of advances and current issues in the field of spatial lung imaging.</p>","PeriodicalId":9292,"journal":{"name":"Breathe","volume":"20 3","pages":"230224"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444490/pdf/","citationCount":"0","resultStr":"{\"title\":\"Spatial lung imaging in clinical and translational settings.\",\"authors\":\"Irma Mahmutovic Persson, Gracijela Bozovic, Gunilla Westergren-Thorsson, Sara Rolandsson Enes\",\"doi\":\"10.1183/20734735.0224-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For many severe lung diseases, non-invasive biomarkers from imaging could improve early detection of lung injury or disease onset, establish a diagnosis, or help follow-up disease progression and treatment strategies. Imaging of the thorax and lung is challenging due to its size, respiration movement, transferred cardiac pulsation, vast density range and gravitation sensitivity. However, there is extensive ongoing research in this fast-evolving field. Recent improvements in spatial imaging have allowed us to study the three-dimensional structure of the lung, providing both spatial architecture and transcriptomic information at single-cell resolution. This fast progression, however, comes with several challenges, including significant image file storage and network capacity issues, increased costs, data processing and analysis, the role of artificial intelligence and machine learning, and mechanisms to combine several modalities. In this review, we provide an overview of advances and current issues in the field of spatial lung imaging.</p>\",\"PeriodicalId\":9292,\"journal\":{\"name\":\"Breathe\",\"volume\":\"20 3\",\"pages\":\"230224\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444490/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Breathe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1183/20734735.0224-2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breathe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1183/20734735.0224-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
Spatial lung imaging in clinical and translational settings.
For many severe lung diseases, non-invasive biomarkers from imaging could improve early detection of lung injury or disease onset, establish a diagnosis, or help follow-up disease progression and treatment strategies. Imaging of the thorax and lung is challenging due to its size, respiration movement, transferred cardiac pulsation, vast density range and gravitation sensitivity. However, there is extensive ongoing research in this fast-evolving field. Recent improvements in spatial imaging have allowed us to study the three-dimensional structure of the lung, providing both spatial architecture and transcriptomic information at single-cell resolution. This fast progression, however, comes with several challenges, including significant image file storage and network capacity issues, increased costs, data processing and analysis, the role of artificial intelligence and machine learning, and mechanisms to combine several modalities. In this review, we provide an overview of advances and current issues in the field of spatial lung imaging.