{"title":"通过光致发光检测脉冲辐射分解法对 DHR123 纳米粘土放射性致氟凝胶剂量计进行时间分辨观测。","authors":"Masao Gohdo, Takuya Maeyama","doi":"10.1088/2057-1976/ad81fd","DOIUrl":null,"url":null,"abstract":"<p><p>The importance of real-time dose evaluation has increased for recent advanced radiotherapy. However, conventional methods for real-time dosimetry using gel dosimeters face challenges owing to the delayed dose response caused by the slow completion of radiation-induced chemical reactions. In this study, a novel technique called photoluminescence-detected pulse radiolysis (PLPR) was developed, and its potential to allow real-time dose measurements using nano-clay radio-fluorogenic gel (NC-RFG) dosimeters was investigated. PLPR is a time-resolved observation method, and enables time-resolved fluorescence measurement. NC-RFG dosimeters were prepared, typically consisting of 100 μM dihydrorhodamine 123 (DHR123) and 2.0 wt.% nano-clay, along with catalytic and dissolving additives. We successfully achieved time-resolved observation of the increase in fluorescence intensity upon irradiation of the dosimeter. Dose evaluation was possible at 1 s after irradiation. The dose-rate effect was not observed for the deoxygenated dosimeter, but was observed for the aerated dosimeter. Besides the dose-rate effect, linear dose responses were obtained for both conditions. Furthermore, we made a novel observation of a decay in the fluorescence intensity over time in the early stages which named fluorescence secondary loss (FSL) and elucidated the conditions under which this phenomenon occurs.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-resolved observation of DHR123 nano-clay radio-fluorogenic gel dosimeters by photoluminescence-detected pulse radiolysis.\",\"authors\":\"Masao Gohdo, Takuya Maeyama\",\"doi\":\"10.1088/2057-1976/ad81fd\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The importance of real-time dose evaluation has increased for recent advanced radiotherapy. However, conventional methods for real-time dosimetry using gel dosimeters face challenges owing to the delayed dose response caused by the slow completion of radiation-induced chemical reactions. In this study, a novel technique called photoluminescence-detected pulse radiolysis (PLPR) was developed, and its potential to allow real-time dose measurements using nano-clay radio-fluorogenic gel (NC-RFG) dosimeters was investigated. PLPR is a time-resolved observation method, and enables time-resolved fluorescence measurement. NC-RFG dosimeters were prepared, typically consisting of 100 μM dihydrorhodamine 123 (DHR123) and 2.0 wt.% nano-clay, along with catalytic and dissolving additives. We successfully achieved time-resolved observation of the increase in fluorescence intensity upon irradiation of the dosimeter. Dose evaluation was possible at 1 s after irradiation. The dose-rate effect was not observed for the deoxygenated dosimeter, but was observed for the aerated dosimeter. Besides the dose-rate effect, linear dose responses were obtained for both conditions. Furthermore, we made a novel observation of a decay in the fluorescence intensity over time in the early stages which named fluorescence secondary loss (FSL) and elucidated the conditions under which this phenomenon occurs.</p>\",\"PeriodicalId\":8896,\"journal\":{\"name\":\"Biomedical Physics & Engineering Express\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Physics & Engineering Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1976/ad81fd\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad81fd","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Time-resolved observation of DHR123 nano-clay radio-fluorogenic gel dosimeters by photoluminescence-detected pulse radiolysis.
The importance of real-time dose evaluation has increased for recent advanced radiotherapy. However, conventional methods for real-time dosimetry using gel dosimeters face challenges owing to the delayed dose response caused by the slow completion of radiation-induced chemical reactions. In this study, a novel technique called photoluminescence-detected pulse radiolysis (PLPR) was developed, and its potential to allow real-time dose measurements using nano-clay radio-fluorogenic gel (NC-RFG) dosimeters was investigated. PLPR is a time-resolved observation method, and enables time-resolved fluorescence measurement. NC-RFG dosimeters were prepared, typically consisting of 100 μM dihydrorhodamine 123 (DHR123) and 2.0 wt.% nano-clay, along with catalytic and dissolving additives. We successfully achieved time-resolved observation of the increase in fluorescence intensity upon irradiation of the dosimeter. Dose evaluation was possible at 1 s after irradiation. The dose-rate effect was not observed for the deoxygenated dosimeter, but was observed for the aerated dosimeter. Besides the dose-rate effect, linear dose responses were obtained for both conditions. Furthermore, we made a novel observation of a decay in the fluorescence intensity over time in the early stages which named fluorescence secondary loss (FSL) and elucidated the conditions under which this phenomenon occurs.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.