Yongle Xu , Xiaohua Gu , Shan Shan , Zeyu Liu , Shaoyang Wang , Jingyuan Zhang , Yuqiong Lei , Cheng Zhong , Qi Zheng , Tao Ren , Zhanxia Li
{"title":"异戊酰螺霉素 I 通过 ATR/CHK1 介导的 DNA 损伤反应和 PERK/eIF2α/ATF4/CHOP 介导的 ER 应激抑制小细胞肺癌的增殖。","authors":"Yongle Xu , Xiaohua Gu , Shan Shan , Zeyu Liu , Shaoyang Wang , Jingyuan Zhang , Yuqiong Lei , Cheng Zhong , Qi Zheng , Tao Ren , Zhanxia Li","doi":"10.1016/j.bcp.2024.116557","DOIUrl":null,"url":null,"abstract":"<div><div>Small cell lung cancer (SCLC) urgently needs new therapeutic approaches. We found that the antibiotic-derived compound Isovalerylspiramycin I (ISP-I) has potent anti-tumor activity against SCLC cell lines H1048 and DMS53 both in vitro and in vivo. ISP-I induced apoptosis, G2/M phase cell cycle arrest, and mitochondrial respiratory chain dysfunction in both cell lines. Comprehensive RNA sequencing revealed that the anti-SCLC effects of ISP-I were primarily attributed to ATR/CHK1-mediated DNA damage response and PERK/eIF2α/ATF4/CHOP-mediated ER stress. Importantly, the induction of DNA damage, ER stress, and apoptosis by ISP-I was mitigated by the reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine (NAC), underscoring the critical role of ROS in the anti-SCLC mechanism of ISP-I. Moreover, ISP-I treatment induced immunogenic cell death (ICD) in SCLC cells, as evidenced by increased adenosine triphosphate (ATP) secretion, elevated release of high-mobility group box 1 (HMGB1), and enhanced exposure of calreticulin (CRT) on the cell surface. Additionally, network pharmacology analysis, combined with cellular thermal shift assay (CETSA) and cycloheximide (CHX) chase experiments, demonstrated that ISP-I acted as a ligand for apurinic/apyrimidinic endonuclease 1 (APEX1) and promoted its degradation, leading to the accumulation of ROS. In conclusion, our findings elucidate the multifaceted mechanisms underlying the anti-cancer effects of ISP-I, highlighting its potential as a promising therapeutic candidate for SCLC treatment.</div></div>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":"230 ","pages":"Article 116557"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isovalerylspiramycin I suppresses small cell lung cancer proliferation via ATR/CHK1 mediated DNA damage response and PERK/eIF2α/ATF4/CHOP mediated ER stress\",\"authors\":\"Yongle Xu , Xiaohua Gu , Shan Shan , Zeyu Liu , Shaoyang Wang , Jingyuan Zhang , Yuqiong Lei , Cheng Zhong , Qi Zheng , Tao Ren , Zhanxia Li\",\"doi\":\"10.1016/j.bcp.2024.116557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Small cell lung cancer (SCLC) urgently needs new therapeutic approaches. We found that the antibiotic-derived compound Isovalerylspiramycin I (ISP-I) has potent anti-tumor activity against SCLC cell lines H1048 and DMS53 both in vitro and in vivo. ISP-I induced apoptosis, G2/M phase cell cycle arrest, and mitochondrial respiratory chain dysfunction in both cell lines. Comprehensive RNA sequencing revealed that the anti-SCLC effects of ISP-I were primarily attributed to ATR/CHK1-mediated DNA damage response and PERK/eIF2α/ATF4/CHOP-mediated ER stress. Importantly, the induction of DNA damage, ER stress, and apoptosis by ISP-I was mitigated by the reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine (NAC), underscoring the critical role of ROS in the anti-SCLC mechanism of ISP-I. Moreover, ISP-I treatment induced immunogenic cell death (ICD) in SCLC cells, as evidenced by increased adenosine triphosphate (ATP) secretion, elevated release of high-mobility group box 1 (HMGB1), and enhanced exposure of calreticulin (CRT) on the cell surface. Additionally, network pharmacology analysis, combined with cellular thermal shift assay (CETSA) and cycloheximide (CHX) chase experiments, demonstrated that ISP-I acted as a ligand for apurinic/apyrimidinic endonuclease 1 (APEX1) and promoted its degradation, leading to the accumulation of ROS. In conclusion, our findings elucidate the multifaceted mechanisms underlying the anti-cancer effects of ISP-I, highlighting its potential as a promising therapeutic candidate for SCLC treatment.</div></div>\",\"PeriodicalId\":8806,\"journal\":{\"name\":\"Biochemical pharmacology\",\"volume\":\"230 \",\"pages\":\"Article 116557\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006295224005574\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006295224005574","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Isovalerylspiramycin I suppresses small cell lung cancer proliferation via ATR/CHK1 mediated DNA damage response and PERK/eIF2α/ATF4/CHOP mediated ER stress
Small cell lung cancer (SCLC) urgently needs new therapeutic approaches. We found that the antibiotic-derived compound Isovalerylspiramycin I (ISP-I) has potent anti-tumor activity against SCLC cell lines H1048 and DMS53 both in vitro and in vivo. ISP-I induced apoptosis, G2/M phase cell cycle arrest, and mitochondrial respiratory chain dysfunction in both cell lines. Comprehensive RNA sequencing revealed that the anti-SCLC effects of ISP-I were primarily attributed to ATR/CHK1-mediated DNA damage response and PERK/eIF2α/ATF4/CHOP-mediated ER stress. Importantly, the induction of DNA damage, ER stress, and apoptosis by ISP-I was mitigated by the reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine (NAC), underscoring the critical role of ROS in the anti-SCLC mechanism of ISP-I. Moreover, ISP-I treatment induced immunogenic cell death (ICD) in SCLC cells, as evidenced by increased adenosine triphosphate (ATP) secretion, elevated release of high-mobility group box 1 (HMGB1), and enhanced exposure of calreticulin (CRT) on the cell surface. Additionally, network pharmacology analysis, combined with cellular thermal shift assay (CETSA) and cycloheximide (CHX) chase experiments, demonstrated that ISP-I acted as a ligand for apurinic/apyrimidinic endonuclease 1 (APEX1) and promoted its degradation, leading to the accumulation of ROS. In conclusion, our findings elucidate the multifaceted mechanisms underlying the anti-cancer effects of ISP-I, highlighting its potential as a promising therapeutic candidate for SCLC treatment.
期刊介绍:
Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics.
The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process.
All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review.
While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.