{"title":"优化超声心动图中先天性心脏病的物体检测算法:探索边界框大小和数据增强技术","authors":"Shih-Hsin Chen, Ken-Pen Weng, Kai-Sheng Hsieh, Yi-Hui Chen, Jo-Hsin Shih, Wen-Ru Li, Ru-Yi Zhang, Yun-Chiao Chen, Wan-Ru Tsai, Ting-Yi Kao","doi":"10.31083/j.rcm2509335","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Congenital heart diseases (CHDs), particularly atrial and ventricular septal defects, pose significant health risks and common challenges in detection via echocardiography. Doctors often employ the cardiac structural information during the diagnostic process. However, prior CHD research has not determined the influence of including cardiac structural information during the labeling process and the application of data augmentation techniques.</p><p><strong>Methods: </strong>This study utilizes advanced artificial intelligence (AI)-driven object detection frameworks, specifically You Look Only Once (YOLO)v5, YOLOv7, and YOLOv9, to assess the impact of including cardiac structural information and data augmentation techniques on the identification of septal defects in echocardiographic images.</p><p><strong>Results: </strong>The experimental results reveal that different labeling strategies substantially affect the performance of the detection models. Notably, adjustments in bounding box dimensions and the inclusion of cardiac structural details in the annotations are key factors influencing the accuracy of the model. The application of deep learning techniques in echocardiography enhances the precision of detecting septal heart defects.</p><p><strong>Conclusions: </strong>This study confirms that careful annotation of imaging data is crucial for optimizing the performance of object detection algorithms in medical imaging. These findings suggest potential pathways for refining AI applications in diagnostic cardiology studies.</p>","PeriodicalId":20989,"journal":{"name":"Reviews in cardiovascular medicine","volume":"25 9","pages":"335"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440387/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimizing Object Detection Algorithms for Congenital Heart Diseases in Echocardiography: Exploring Bounding Box Sizes and Data Augmentation Techniques.\",\"authors\":\"Shih-Hsin Chen, Ken-Pen Weng, Kai-Sheng Hsieh, Yi-Hui Chen, Jo-Hsin Shih, Wen-Ru Li, Ru-Yi Zhang, Yun-Chiao Chen, Wan-Ru Tsai, Ting-Yi Kao\",\"doi\":\"10.31083/j.rcm2509335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Congenital heart diseases (CHDs), particularly atrial and ventricular septal defects, pose significant health risks and common challenges in detection via echocardiography. Doctors often employ the cardiac structural information during the diagnostic process. However, prior CHD research has not determined the influence of including cardiac structural information during the labeling process and the application of data augmentation techniques.</p><p><strong>Methods: </strong>This study utilizes advanced artificial intelligence (AI)-driven object detection frameworks, specifically You Look Only Once (YOLO)v5, YOLOv7, and YOLOv9, to assess the impact of including cardiac structural information and data augmentation techniques on the identification of septal defects in echocardiographic images.</p><p><strong>Results: </strong>The experimental results reveal that different labeling strategies substantially affect the performance of the detection models. Notably, adjustments in bounding box dimensions and the inclusion of cardiac structural details in the annotations are key factors influencing the accuracy of the model. The application of deep learning techniques in echocardiography enhances the precision of detecting septal heart defects.</p><p><strong>Conclusions: </strong>This study confirms that careful annotation of imaging data is crucial for optimizing the performance of object detection algorithms in medical imaging. These findings suggest potential pathways for refining AI applications in diagnostic cardiology studies.</p>\",\"PeriodicalId\":20989,\"journal\":{\"name\":\"Reviews in cardiovascular medicine\",\"volume\":\"25 9\",\"pages\":\"335\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440387/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in cardiovascular medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.31083/j.rcm2509335\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in cardiovascular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.31083/j.rcm2509335","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Optimizing Object Detection Algorithms for Congenital Heart Diseases in Echocardiography: Exploring Bounding Box Sizes and Data Augmentation Techniques.
Background: Congenital heart diseases (CHDs), particularly atrial and ventricular septal defects, pose significant health risks and common challenges in detection via echocardiography. Doctors often employ the cardiac structural information during the diagnostic process. However, prior CHD research has not determined the influence of including cardiac structural information during the labeling process and the application of data augmentation techniques.
Methods: This study utilizes advanced artificial intelligence (AI)-driven object detection frameworks, specifically You Look Only Once (YOLO)v5, YOLOv7, and YOLOv9, to assess the impact of including cardiac structural information and data augmentation techniques on the identification of septal defects in echocardiographic images.
Results: The experimental results reveal that different labeling strategies substantially affect the performance of the detection models. Notably, adjustments in bounding box dimensions and the inclusion of cardiac structural details in the annotations are key factors influencing the accuracy of the model. The application of deep learning techniques in echocardiography enhances the precision of detecting septal heart defects.
Conclusions: This study confirms that careful annotation of imaging data is crucial for optimizing the performance of object detection algorithms in medical imaging. These findings suggest potential pathways for refining AI applications in diagnostic cardiology studies.
期刊介绍:
RCM is an international, peer-reviewed, open access journal. RCM publishes research articles, review papers and short communications on cardiovascular medicine as well as research on cardiovascular disease. We aim to provide a forum for publishing papers which explore the pathogenesis and promote the progression of cardiac and vascular diseases. We also seek to establish an interdisciplinary platform, focusing on translational issues, to facilitate the advancement of research, clinical treatment and diagnostic procedures. Heart surgery, cardiovascular imaging, risk factors and various clinical cardiac & vascular research will be considered.