Brittany J Carr, Dominic Skitsko, Linnea M Kriese, Jun Song, Zixuan Li, Myeong Jin Ju, Orson L Moritz
{"title":"Prominin-1缺失的爪蟾会出现视网膜下类风湿沉积、锥杆营养不良和 RPE 萎缩。","authors":"Brittany J Carr, Dominic Skitsko, Linnea M Kriese, Jun Song, Zixuan Li, Myeong Jin Ju, Orson L Moritz","doi":"10.1242/jcs.262298","DOIUrl":null,"url":null,"abstract":"<p><p>Prominin-1 (PROM1) variants are associated with inherited, non-syndromic vision loss. We used CRISPR/Cas9 to induce prom1-null mutations in Xenopus laevis and then tracked retinal disease progression from the ages of 6 weeks to 3 years. We found that prom1-null-associated retinal degeneration in frogs was age-dependent and involved retinal pigment epithelium (RPE) dysfunction preceding photoreceptor degeneration. Before photoreceptor degeneration occurred, aging prom1-null frogs developed larger and increasing numbers of cellular debris deposits in the subretinal space and outer segment layer, which resembled subretinal drusenoid deposits (SDDs) in their location, histology and representation as seen by color fundus photography and optical coherence tomography (OCT). Evidence for an RPE origin of these deposits included infiltration of pigment granules into the deposits, thinning of the RPE as measured by OCT, and RPE disorganization as measured by histology and OCT. The appearance and accumulation of SDD-like deposits and RPE thinning and disorganization in our animal model suggests an underlying disease mechanism for prom1-null-mediated blindness that involves death and dysfunction of the RPE preceding photoreceptor degeneration, instead of direct effects upon photoreceptor outer segment morphogenesis, as was previously hypothesized.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586525/pdf/","citationCount":"0","resultStr":"{\"title\":\"prominin-1-null Xenopus laevis develop subretinal drusenoid-like deposits, cone-rod dystrophy and RPE atrophy.\",\"authors\":\"Brittany J Carr, Dominic Skitsko, Linnea M Kriese, Jun Song, Zixuan Li, Myeong Jin Ju, Orson L Moritz\",\"doi\":\"10.1242/jcs.262298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prominin-1 (PROM1) variants are associated with inherited, non-syndromic vision loss. We used CRISPR/Cas9 to induce prom1-null mutations in Xenopus laevis and then tracked retinal disease progression from the ages of 6 weeks to 3 years. We found that prom1-null-associated retinal degeneration in frogs was age-dependent and involved retinal pigment epithelium (RPE) dysfunction preceding photoreceptor degeneration. Before photoreceptor degeneration occurred, aging prom1-null frogs developed larger and increasing numbers of cellular debris deposits in the subretinal space and outer segment layer, which resembled subretinal drusenoid deposits (SDDs) in their location, histology and representation as seen by color fundus photography and optical coherence tomography (OCT). Evidence for an RPE origin of these deposits included infiltration of pigment granules into the deposits, thinning of the RPE as measured by OCT, and RPE disorganization as measured by histology and OCT. The appearance and accumulation of SDD-like deposits and RPE thinning and disorganization in our animal model suggests an underlying disease mechanism for prom1-null-mediated blindness that involves death and dysfunction of the RPE preceding photoreceptor degeneration, instead of direct effects upon photoreceptor outer segment morphogenesis, as was previously hypothesized.</p>\",\"PeriodicalId\":15227,\"journal\":{\"name\":\"Journal of cell science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586525/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cell science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/jcs.262298\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.262298","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Prominin-1 (PROM1) variants are associated with inherited, non-syndromic vision loss. We used CRISPR/Cas9 to induce prom1-null mutations in Xenopus laevis and then tracked retinal disease progression from the ages of 6 weeks to 3 years. We found that prom1-null-associated retinal degeneration in frogs was age-dependent and involved retinal pigment epithelium (RPE) dysfunction preceding photoreceptor degeneration. Before photoreceptor degeneration occurred, aging prom1-null frogs developed larger and increasing numbers of cellular debris deposits in the subretinal space and outer segment layer, which resembled subretinal drusenoid deposits (SDDs) in their location, histology and representation as seen by color fundus photography and optical coherence tomography (OCT). Evidence for an RPE origin of these deposits included infiltration of pigment granules into the deposits, thinning of the RPE as measured by OCT, and RPE disorganization as measured by histology and OCT. The appearance and accumulation of SDD-like deposits and RPE thinning and disorganization in our animal model suggests an underlying disease mechanism for prom1-null-mediated blindness that involves death and dysfunction of the RPE preceding photoreceptor degeneration, instead of direct effects upon photoreceptor outer segment morphogenesis, as was previously hypothesized.