{"title":"SNAIL 对 LRP1 的抑制导致血管疾病遗传风险中的 ECM 重塑。","authors":"Lu Liu, Joséphine Henry, Yingwei Liu, Charlène Jouve, Jean-Sébastien Hulot, Adrien Georges, Nabila Bouatia-Naji","doi":"10.1161/CIRCRESAHA.124.325269","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Genome-wide association studies implicate common genetic variations in the <i>LRP1</i> (low-density lipoprotein receptor-related protein 1 gene) locus at risk for multiple vascular diseases and traits. However, the underlying biological mechanisms are unknown.</p><p><strong>Methods: </strong>Fine mapping analyses included Bayesian colocalization to identify the most likely causal variant. Human induced pluripotent stem cells were genome-edited using CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated protein 9) to delete or modify candidate enhancer regions and generate <i>LRP1</i> knockout cell lines. Cells were differentiated into smooth muscle cells through a mesodermal lineage. Transcription regulation was assessed using luciferase reporter assay, transcription factor knockdown, and chromatin immunoprecipitation. Phenotype changes in cells were conducted using cellular assays, bulk RNA sequencing, and mass spectrometry.</p><p><strong>Results: </strong>Multitrait colocalization analyses pointed at rs11172113 as the most likely causal variant in <i>LRP1</i> for fibromuscular dysplasia, migraine, pulse pressure, and spontaneous coronary artery dissection. We found the rs11172113-T allele to associate with higher <i>LRP1</i> expression. Genomic deletion in induced pluripotent stem cell-derived smooth muscle cells supported rs11172113 to locate in an enhancer region regulating <i>LRP1</i> expression. We found transcription factors MECP2 (methyl CpG binding protein 2) and SNAIL (Zinc Finger Protein SNAI1) to repress <i>LRP1</i> expression through an allele-specific mechanism, involving SNAIL interaction with disease risk allele. <i>LRP1</i> knockout decreased induced pluripotent stem cell-derived smooth muscle cell proliferation and migration. Differentially expressed genes were enriched for collagen-containing extracellular matrix and connective tissue development. <i>LRP1</i> knockout and deletion of rs11172113 enhancer showed potentiated canonical TGF-β (transforming growth factor beta) signaling through enhanced phosphorylation of SMAD2/3 (Mothers against decapentaplegic homolog 2/3). Analyses of the protein content of decellularized extracts indicated partial extracellular matrix remodeling involving enhanced secretion of CYR61 (cystein rich angiogenic protein 61), a known LRP1 ligand involved in vascular integrity and TIMP3 (Metalloproteinase inhibitor 3), implicated in extracellular matrix maintenance and also known to interact with LRP1.</p><p><strong>Conclusions: </strong>Our findings support allele-specific <i>LRP1</i> expression repression by the endothelial-to-mesenchymal transition regulator SNAIL. We propose decreased <i>LRP1</i> expression in smooth muscle cells to remodel the extracellular matrix enhanced by TGF-β as a potential mechanism of this pleiotropic locus for vascular diseases.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":" ","pages":"1084-1097"},"PeriodicalIF":16.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542979/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>LRP1</i> Repression by SNAIL Results in ECM Remodeling in Genetic Risk for Vascular Diseases.\",\"authors\":\"Lu Liu, Joséphine Henry, Yingwei Liu, Charlène Jouve, Jean-Sébastien Hulot, Adrien Georges, Nabila Bouatia-Naji\",\"doi\":\"10.1161/CIRCRESAHA.124.325269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Genome-wide association studies implicate common genetic variations in the <i>LRP1</i> (low-density lipoprotein receptor-related protein 1 gene) locus at risk for multiple vascular diseases and traits. However, the underlying biological mechanisms are unknown.</p><p><strong>Methods: </strong>Fine mapping analyses included Bayesian colocalization to identify the most likely causal variant. Human induced pluripotent stem cells were genome-edited using CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated protein 9) to delete or modify candidate enhancer regions and generate <i>LRP1</i> knockout cell lines. Cells were differentiated into smooth muscle cells through a mesodermal lineage. Transcription regulation was assessed using luciferase reporter assay, transcription factor knockdown, and chromatin immunoprecipitation. Phenotype changes in cells were conducted using cellular assays, bulk RNA sequencing, and mass spectrometry.</p><p><strong>Results: </strong>Multitrait colocalization analyses pointed at rs11172113 as the most likely causal variant in <i>LRP1</i> for fibromuscular dysplasia, migraine, pulse pressure, and spontaneous coronary artery dissection. We found the rs11172113-T allele to associate with higher <i>LRP1</i> expression. Genomic deletion in induced pluripotent stem cell-derived smooth muscle cells supported rs11172113 to locate in an enhancer region regulating <i>LRP1</i> expression. We found transcription factors MECP2 (methyl CpG binding protein 2) and SNAIL (Zinc Finger Protein SNAI1) to repress <i>LRP1</i> expression through an allele-specific mechanism, involving SNAIL interaction with disease risk allele. <i>LRP1</i> knockout decreased induced pluripotent stem cell-derived smooth muscle cell proliferation and migration. Differentially expressed genes were enriched for collagen-containing extracellular matrix and connective tissue development. <i>LRP1</i> knockout and deletion of rs11172113 enhancer showed potentiated canonical TGF-β (transforming growth factor beta) signaling through enhanced phosphorylation of SMAD2/3 (Mothers against decapentaplegic homolog 2/3). Analyses of the protein content of decellularized extracts indicated partial extracellular matrix remodeling involving enhanced secretion of CYR61 (cystein rich angiogenic protein 61), a known LRP1 ligand involved in vascular integrity and TIMP3 (Metalloproteinase inhibitor 3), implicated in extracellular matrix maintenance and also known to interact with LRP1.</p><p><strong>Conclusions: </strong>Our findings support allele-specific <i>LRP1</i> expression repression by the endothelial-to-mesenchymal transition regulator SNAIL. We propose decreased <i>LRP1</i> expression in smooth muscle cells to remodel the extracellular matrix enhanced by TGF-β as a potential mechanism of this pleiotropic locus for vascular diseases.</p>\",\"PeriodicalId\":10147,\"journal\":{\"name\":\"Circulation research\",\"volume\":\" \",\"pages\":\"1084-1097\"},\"PeriodicalIF\":16.5000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542979/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1161/CIRCRESAHA.124.325269\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCRESAHA.124.325269","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
LRP1 Repression by SNAIL Results in ECM Remodeling in Genetic Risk for Vascular Diseases.
Background: Genome-wide association studies implicate common genetic variations in the LRP1 (low-density lipoprotein receptor-related protein 1 gene) locus at risk for multiple vascular diseases and traits. However, the underlying biological mechanisms are unknown.
Methods: Fine mapping analyses included Bayesian colocalization to identify the most likely causal variant. Human induced pluripotent stem cells were genome-edited using CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated protein 9) to delete or modify candidate enhancer regions and generate LRP1 knockout cell lines. Cells were differentiated into smooth muscle cells through a mesodermal lineage. Transcription regulation was assessed using luciferase reporter assay, transcription factor knockdown, and chromatin immunoprecipitation. Phenotype changes in cells were conducted using cellular assays, bulk RNA sequencing, and mass spectrometry.
Results: Multitrait colocalization analyses pointed at rs11172113 as the most likely causal variant in LRP1 for fibromuscular dysplasia, migraine, pulse pressure, and spontaneous coronary artery dissection. We found the rs11172113-T allele to associate with higher LRP1 expression. Genomic deletion in induced pluripotent stem cell-derived smooth muscle cells supported rs11172113 to locate in an enhancer region regulating LRP1 expression. We found transcription factors MECP2 (methyl CpG binding protein 2) and SNAIL (Zinc Finger Protein SNAI1) to repress LRP1 expression through an allele-specific mechanism, involving SNAIL interaction with disease risk allele. LRP1 knockout decreased induced pluripotent stem cell-derived smooth muscle cell proliferation and migration. Differentially expressed genes were enriched for collagen-containing extracellular matrix and connective tissue development. LRP1 knockout and deletion of rs11172113 enhancer showed potentiated canonical TGF-β (transforming growth factor beta) signaling through enhanced phosphorylation of SMAD2/3 (Mothers against decapentaplegic homolog 2/3). Analyses of the protein content of decellularized extracts indicated partial extracellular matrix remodeling involving enhanced secretion of CYR61 (cystein rich angiogenic protein 61), a known LRP1 ligand involved in vascular integrity and TIMP3 (Metalloproteinase inhibitor 3), implicated in extracellular matrix maintenance and also known to interact with LRP1.
Conclusions: Our findings support allele-specific LRP1 expression repression by the endothelial-to-mesenchymal transition regulator SNAIL. We propose decreased LRP1 expression in smooth muscle cells to remodel the extracellular matrix enhanced by TGF-β as a potential mechanism of this pleiotropic locus for vascular diseases.
期刊介绍:
Circulation Research is a peer-reviewed journal that serves as a forum for the highest quality research in basic cardiovascular biology. The journal publishes studies that utilize state-of-the-art approaches to investigate mechanisms of human disease, as well as translational and clinical research that provide fundamental insights into the basis of disease and the mechanism of therapies.
Circulation Research has a broad audience that includes clinical and academic cardiologists, basic cardiovascular scientists, physiologists, cellular and molecular biologists, and cardiovascular pharmacologists. The journal aims to advance the understanding of cardiovascular biology and disease by disseminating cutting-edge research to these diverse communities.
In terms of indexing, Circulation Research is included in several prominent scientific databases, including BIOSIS, CAB Abstracts, Chemical Abstracts, Current Contents, EMBASE, and MEDLINE. This ensures that the journal's articles are easily discoverable and accessible to researchers in the field.
Overall, Circulation Research is a reputable publication that attracts high-quality research and provides a platform for the dissemination of important findings in basic cardiovascular biology and its translational and clinical applications.