{"title":"SAE-Impute:通过子空间回归和自动编码器对单细胞数据进行估算。","authors":"Liang Bai, Boya Ji, Shulin Wang","doi":"10.1186/s12859-024-05944-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Single-cell RNA sequencing (scRNA-seq) technology has emerged as a crucial tool for studying cellular heterogeneity. However, dropouts are inherent to the sequencing process, known as dropout events, posing challenges in downstream analysis and interpretation. Imputing dropout data becomes a critical concern in scRNA-seq data analysis. Present imputation methods predominantly rely on statistical or machine learning approaches, often overlooking inter-sample correlations.</p><p><strong>Results: </strong>To address this limitation, We introduced SAE-Impute, a new computational method for imputing single-cell data by combining subspace regression and auto-encoders for enhancing the accuracy and reliability of the imputation process. Specifically, SAE-Impute assesses sample correlations via subspace regression, predicts potential dropout values, and then leverages these predictions within an autoencoder framework for interpolation. To validate the performance of SAE-Impute, we systematically conducted experiments on both simulated and real scRNA-seq datasets. These results highlight that SAE-Impute effectively reduces false negative signals in single-cell data and enhances the retrieval of dropout values, gene-gene and cell-cell correlations. Finally, We also conducted several downstream analyses on the imputed single-cell RNA sequencing (scRNA-seq) data, including the identification of differential gene expression, cell clustering and visualization, and cell trajectory construction.</p><p><strong>Conclusions: </strong>These results once again demonstrate that SAE-Impute is able to effectively reduce the droupouts in single-cell dataset, thereby improving the functional interpretability of the data.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443887/pdf/","citationCount":"0","resultStr":"{\"title\":\"SAE-Impute: imputation for single-cell data via subspace regression and auto-encoders.\",\"authors\":\"Liang Bai, Boya Ji, Shulin Wang\",\"doi\":\"10.1186/s12859-024-05944-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Single-cell RNA sequencing (scRNA-seq) technology has emerged as a crucial tool for studying cellular heterogeneity. However, dropouts are inherent to the sequencing process, known as dropout events, posing challenges in downstream analysis and interpretation. Imputing dropout data becomes a critical concern in scRNA-seq data analysis. Present imputation methods predominantly rely on statistical or machine learning approaches, often overlooking inter-sample correlations.</p><p><strong>Results: </strong>To address this limitation, We introduced SAE-Impute, a new computational method for imputing single-cell data by combining subspace regression and auto-encoders for enhancing the accuracy and reliability of the imputation process. Specifically, SAE-Impute assesses sample correlations via subspace regression, predicts potential dropout values, and then leverages these predictions within an autoencoder framework for interpolation. To validate the performance of SAE-Impute, we systematically conducted experiments on both simulated and real scRNA-seq datasets. These results highlight that SAE-Impute effectively reduces false negative signals in single-cell data and enhances the retrieval of dropout values, gene-gene and cell-cell correlations. Finally, We also conducted several downstream analyses on the imputed single-cell RNA sequencing (scRNA-seq) data, including the identification of differential gene expression, cell clustering and visualization, and cell trajectory construction.</p><p><strong>Conclusions: </strong>These results once again demonstrate that SAE-Impute is able to effectively reduce the droupouts in single-cell dataset, thereby improving the functional interpretability of the data.</p>\",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443887/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-024-05944-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05944-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
SAE-Impute: imputation for single-cell data via subspace regression and auto-encoders.
Background: Single-cell RNA sequencing (scRNA-seq) technology has emerged as a crucial tool for studying cellular heterogeneity. However, dropouts are inherent to the sequencing process, known as dropout events, posing challenges in downstream analysis and interpretation. Imputing dropout data becomes a critical concern in scRNA-seq data analysis. Present imputation methods predominantly rely on statistical or machine learning approaches, often overlooking inter-sample correlations.
Results: To address this limitation, We introduced SAE-Impute, a new computational method for imputing single-cell data by combining subspace regression and auto-encoders for enhancing the accuracy and reliability of the imputation process. Specifically, SAE-Impute assesses sample correlations via subspace regression, predicts potential dropout values, and then leverages these predictions within an autoencoder framework for interpolation. To validate the performance of SAE-Impute, we systematically conducted experiments on both simulated and real scRNA-seq datasets. These results highlight that SAE-Impute effectively reduces false negative signals in single-cell data and enhances the retrieval of dropout values, gene-gene and cell-cell correlations. Finally, We also conducted several downstream analyses on the imputed single-cell RNA sequencing (scRNA-seq) data, including the identification of differential gene expression, cell clustering and visualization, and cell trajectory construction.
Conclusions: These results once again demonstrate that SAE-Impute is able to effectively reduce the droupouts in single-cell dataset, thereby improving the functional interpretability of the data.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.