二进制空间动态网络状态和参数估计的贝叶斯优化。

Mohammad Alali, Mahdi Imani
{"title":"二进制空间动态网络状态和参数估计的贝叶斯优化。","authors":"Mohammad Alali, Mahdi Imani","doi":"10.1109/ccta60707.2024.10666595","DOIUrl":null,"url":null,"abstract":"<p><p>This paper focuses on joint state and parameter estimation in partially observed Boolean dynamical systems (POBDS), a hidden Markov model tailored for modeling complex networks with binary state variables. The majority of current techniques for parameter estimation rely on computationally expensive gradient-based methods, which become intractable in most practical applications with large size of networks. We propose a gradient-free approach that uses Gaussian processes to model the expensive log-likelihood function and utilizes Bayesian optimization for efficient likelihood search over parameter space. Joint state estimation is also achieved alongside parameter estimation using the Boolean Kalman filter. The performance of the proposed method is demonstrated using gene regulatory networks observed through synthetic gene-expression data. The numerical results demonstrate the scalability and effectiveness of the proposed method in the joint estimation of the model parameters and genes' states.</p>","PeriodicalId":72705,"journal":{"name":"Control Technology and Applications. Control Technology and Applications","volume":"2024 ","pages":"400-406"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444668/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bayesian Optimization for State and Parameter Estimation of Dynamic Networks with Binary Space.\",\"authors\":\"Mohammad Alali, Mahdi Imani\",\"doi\":\"10.1109/ccta60707.2024.10666595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper focuses on joint state and parameter estimation in partially observed Boolean dynamical systems (POBDS), a hidden Markov model tailored for modeling complex networks with binary state variables. The majority of current techniques for parameter estimation rely on computationally expensive gradient-based methods, which become intractable in most practical applications with large size of networks. We propose a gradient-free approach that uses Gaussian processes to model the expensive log-likelihood function and utilizes Bayesian optimization for efficient likelihood search over parameter space. Joint state estimation is also achieved alongside parameter estimation using the Boolean Kalman filter. The performance of the proposed method is demonstrated using gene regulatory networks observed through synthetic gene-expression data. The numerical results demonstrate the scalability and effectiveness of the proposed method in the joint estimation of the model parameters and genes' states.</p>\",\"PeriodicalId\":72705,\"journal\":{\"name\":\"Control Technology and Applications. Control Technology and Applications\",\"volume\":\"2024 \",\"pages\":\"400-406\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444668/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control Technology and Applications. Control Technology and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ccta60707.2024.10666595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Technology and Applications. Control Technology and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ccta60707.2024.10666595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

部分观测布尔动态系统(POBDS)是一种隐马尔可夫模型,专为具有二进制状态变量的复杂网络建模而设计。目前大多数参数估计技术都依赖于计算成本高昂的基于梯度的方法,而这种方法在网络规模较大的大多数实际应用中都难以实现。我们提出了一种无梯度方法,它使用高斯过程来模拟昂贵的对数似然函数,并利用贝叶斯优化法在参数空间内进行高效似然搜索。在使用布尔卡尔曼滤波器进行参数估计的同时,还实现了联合状态估计。通过合成基因表达数据观测到的基因调控网络证明了所提方法的性能。数值结果证明了所提方法在联合估计模型参数和基因状态方面的可扩展性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Optimization for State and Parameter Estimation of Dynamic Networks with Binary Space.

This paper focuses on joint state and parameter estimation in partially observed Boolean dynamical systems (POBDS), a hidden Markov model tailored for modeling complex networks with binary state variables. The majority of current techniques for parameter estimation rely on computationally expensive gradient-based methods, which become intractable in most practical applications with large size of networks. We propose a gradient-free approach that uses Gaussian processes to model the expensive log-likelihood function and utilizes Bayesian optimization for efficient likelihood search over parameter space. Joint state estimation is also achieved alongside parameter estimation using the Boolean Kalman filter. The performance of the proposed method is demonstrated using gene regulatory networks observed through synthetic gene-expression data. The numerical results demonstrate the scalability and effectiveness of the proposed method in the joint estimation of the model parameters and genes' states.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信