定量前列腺 MRI,选自 AJR 定量成像特别系列。

IF 4.7 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Daniel J A Margolis, Aritrick Chatterjee, Nandita M deSouza, Andriy Fedorov, Fiona M Fennessy, Stephan E Maier, Nancy Obuchowski, Shonit Punwani, Andrei Purysko, Rebecca Rakow-Penner, Amita Shukla-Dave, Clare M Tempany, Michael Boss, Dariya Malyarenko
{"title":"定量前列腺 MRI,选自 AJR 定量成像特别系列。","authors":"Daniel J A Margolis, Aritrick Chatterjee, Nandita M deSouza, Andriy Fedorov, Fiona M Fennessy, Stephan E Maier, Nancy Obuchowski, Shonit Punwani, Andrei Purysko, Rebecca Rakow-Penner, Amita Shukla-Dave, Clare M Tempany, Michael Boss, Dariya Malyarenko","doi":"10.2214/AJR.24.31715","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate MRI has traditionally relied on qualitative interpretation. However, quantitative components hold the potential to markedly improve performance. The ADC from DWI is probably the most widely recognized quantitative MRI biomarker and has shown strong discriminatory value for clinically significant prostate cancer (csPCa) as well as for recurrent cancer after treatment. Advanced diffusion techniques, including intravoxel incoherent motion, diffusion kurtosis, diffusion tensor imaging, and specific implementations such as restriction spectrum imaging, purport even better discrimination, but are more technically challenging. The inherent T1 and T2 of tissue also provide diagnostic value, with more advanced techniques deriving luminal water imaging and hybrid-multidimensional MRI. Dynamic contrast-enhanced imaging, primarily using a modified Tofts model, also shows independent discriminatory value. Finally, quantitative size and shape features can be combined with the aforementioned techniques and be further refined using radiomics, texture analysis, and artificial intelligence. Which technique will ultimately find widespread clinical use will depend on validation across a myriad of platforms use-cases.</p>","PeriodicalId":55529,"journal":{"name":"American Journal of Roentgenology","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative Prostate MRI, From the <i>AJR</i> Special Series on Quantitative Imaging.\",\"authors\":\"Daniel J A Margolis, Aritrick Chatterjee, Nandita M deSouza, Andriy Fedorov, Fiona M Fennessy, Stephan E Maier, Nancy Obuchowski, Shonit Punwani, Andrei Purysko, Rebecca Rakow-Penner, Amita Shukla-Dave, Clare M Tempany, Michael Boss, Dariya Malyarenko\",\"doi\":\"10.2214/AJR.24.31715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prostate MRI has traditionally relied on qualitative interpretation. However, quantitative components hold the potential to markedly improve performance. The ADC from DWI is probably the most widely recognized quantitative MRI biomarker and has shown strong discriminatory value for clinically significant prostate cancer (csPCa) as well as for recurrent cancer after treatment. Advanced diffusion techniques, including intravoxel incoherent motion, diffusion kurtosis, diffusion tensor imaging, and specific implementations such as restriction spectrum imaging, purport even better discrimination, but are more technically challenging. The inherent T1 and T2 of tissue also provide diagnostic value, with more advanced techniques deriving luminal water imaging and hybrid-multidimensional MRI. Dynamic contrast-enhanced imaging, primarily using a modified Tofts model, also shows independent discriminatory value. Finally, quantitative size and shape features can be combined with the aforementioned techniques and be further refined using radiomics, texture analysis, and artificial intelligence. Which technique will ultimately find widespread clinical use will depend on validation across a myriad of platforms use-cases.</p>\",\"PeriodicalId\":55529,\"journal\":{\"name\":\"American Journal of Roentgenology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Roentgenology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2214/AJR.24.31715\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Roentgenology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2214/AJR.24.31715","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

前列腺磁共振成像历来依赖于定性分析。然而,定量成分有可能显著提高性能。DWI 的 ADC 可能是最广为人知的定量 MRI 生物标志物,对有临床意义的前列腺癌(csPCa)和治疗后复发的癌症有很强的鉴别价值。先进的弥散技术,包括体细胞内不连贯运动、弥散峰度、弥散张量成像以及限制频谱成像等具体实现方法,都声称具有更好的分辨能力,但在技术上更具挑战性。组织固有的 T1 和 T2 也具有诊断价值,更先进的技术包括管腔水成像和混合多维 MRI。动态对比增强成像(主要使用改良的 Tofts 模型)也显示出独立的鉴别价值。最后,定量的大小和形状特征可以与上述技术相结合,并通过放射组学、纹理分析和人工智能得到进一步完善。哪种技术最终能在临床上得到广泛应用,将取决于无数平台用例的验证结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantitative Prostate MRI, From the AJR Special Series on Quantitative Imaging.

Prostate MRI has traditionally relied on qualitative interpretation. However, quantitative components hold the potential to markedly improve performance. The ADC from DWI is probably the most widely recognized quantitative MRI biomarker and has shown strong discriminatory value for clinically significant prostate cancer (csPCa) as well as for recurrent cancer after treatment. Advanced diffusion techniques, including intravoxel incoherent motion, diffusion kurtosis, diffusion tensor imaging, and specific implementations such as restriction spectrum imaging, purport even better discrimination, but are more technically challenging. The inherent T1 and T2 of tissue also provide diagnostic value, with more advanced techniques deriving luminal water imaging and hybrid-multidimensional MRI. Dynamic contrast-enhanced imaging, primarily using a modified Tofts model, also shows independent discriminatory value. Finally, quantitative size and shape features can be combined with the aforementioned techniques and be further refined using radiomics, texture analysis, and artificial intelligence. Which technique will ultimately find widespread clinical use will depend on validation across a myriad of platforms use-cases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.80
自引率
4.00%
发文量
920
审稿时长
3 months
期刊介绍: Founded in 1907, the monthly American Journal of Roentgenology (AJR) is the world’s longest continuously published general radiology journal. AJR is recognized as among the specialty’s leading peer-reviewed journals and has a worldwide circulation of close to 25,000. The journal publishes clinically-oriented articles across all radiology subspecialties, seeking relevance to radiologists’ daily practice. The journal publishes hundreds of articles annually with a diverse range of formats, including original research, reviews, clinical perspectives, editorials, and other short reports. The journal engages its audience through a spectrum of social media and digital communication activities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信