利用纳米技术铸造铝合金 7075 涡轮机

Guan-Cheng Chen, Till Felix Reufsteck, Yitian Chi, Xiaochun Li
{"title":"利用纳米技术铸造铝合金 7075 涡轮机","authors":"Guan-Cheng Chen, Till Felix Reufsteck, Yitian Chi, Xiaochun Li","doi":"10.1038/s44334-024-00004-x","DOIUrl":null,"url":null,"abstract":"Aluminum alloy 7075 is well-known for its high-performance structural systems due to its lightweight and excellent mechanical properties. However, its susceptibility to hot cracking and limited fluidity hinder its casting suitability, posing challenges in manufacturing near-net-shaped structures economically, especially for thin and intricate aerospace components. This paper presents experimental results based on nano-treating, an emerging nanotechnology-enabled manufacturing method by incorporating a low fraction of nanoparticles in liquid aluminum, to allow the casting of complex aluminum alloy 7075 parts. Vacuum fluidity tests demonstrated that nano-treating of aluminum alloy 7075 with only 0.5 vol% TiC nanoparticles increased the fluidity of aluminum alloy 7075 by more than 20%, effectively eliminating hot cracking and enhancing surface quality. Through the Rapid Investment Casting process, nano-treated aluminum alloy 7075 can be successfully cast into turbines with 0.5 mm thick blades. In contrast, aluminum alloy 7075 without nano-treating failed to produce good casting quality due to poor filling and severe cracks. The manufacturing trials highlight the significant improvement in castability achieved through nano-treating, opening a novel pathway for the cost-effective production of complex aluminum alloy 7075 structures for numerous applications.","PeriodicalId":501702,"journal":{"name":"npj Advanced Manufacturing","volume":" ","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44334-024-00004-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Nanotechnology enabled casting of aluminum alloy 7075 turbines\",\"authors\":\"Guan-Cheng Chen, Till Felix Reufsteck, Yitian Chi, Xiaochun Li\",\"doi\":\"10.1038/s44334-024-00004-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aluminum alloy 7075 is well-known for its high-performance structural systems due to its lightweight and excellent mechanical properties. However, its susceptibility to hot cracking and limited fluidity hinder its casting suitability, posing challenges in manufacturing near-net-shaped structures economically, especially for thin and intricate aerospace components. This paper presents experimental results based on nano-treating, an emerging nanotechnology-enabled manufacturing method by incorporating a low fraction of nanoparticles in liquid aluminum, to allow the casting of complex aluminum alloy 7075 parts. Vacuum fluidity tests demonstrated that nano-treating of aluminum alloy 7075 with only 0.5 vol% TiC nanoparticles increased the fluidity of aluminum alloy 7075 by more than 20%, effectively eliminating hot cracking and enhancing surface quality. Through the Rapid Investment Casting process, nano-treated aluminum alloy 7075 can be successfully cast into turbines with 0.5 mm thick blades. In contrast, aluminum alloy 7075 without nano-treating failed to produce good casting quality due to poor filling and severe cracks. The manufacturing trials highlight the significant improvement in castability achieved through nano-treating, opening a novel pathway for the cost-effective production of complex aluminum alloy 7075 structures for numerous applications.\",\"PeriodicalId\":501702,\"journal\":{\"name\":\"npj Advanced Manufacturing\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44334-024-00004-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Advanced Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44334-024-00004-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Advanced Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44334-024-00004-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

铝合金 7075 因其轻质和优异的机械性能而以其高性能结构系统而闻名。然而,其易热裂性和有限的流动性阻碍了它的铸造适用性,为经济地制造近网状结构带来了挑战,特别是对于薄而复杂的航空航天部件。本文介绍了基于纳米处理的实验结果。纳米处理是一种新兴的纳米技术制造方法,通过在铝液中加入低含量的纳米颗粒,可以铸造复杂的铝合金 7075 零件。真空流动性测试表明,仅用 0.5 Vol% 的 TiC 纳米粒子对铝合金 7075 进行纳米处理,就能将铝合金 7075 的流动性提高 20% 以上,有效消除热裂纹并提高表面质量。通过快速熔模铸造工艺,经过纳米处理的铝合金 7075 可成功铸造成厚度为 0.5 毫米的涡轮机叶片。相比之下,未经过纳米处理的铝合金 7075 则由于填充不良和严重裂纹而无法获得良好的铸造质量。生产试验凸显了纳米处理对可铸性的显著改善,为经济高效地生产复杂的铝合金 7075 结构开辟了一条新途径,可用于多种应用领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanotechnology enabled casting of aluminum alloy 7075 turbines

Nanotechnology enabled casting of aluminum alloy 7075 turbines
Aluminum alloy 7075 is well-known for its high-performance structural systems due to its lightweight and excellent mechanical properties. However, its susceptibility to hot cracking and limited fluidity hinder its casting suitability, posing challenges in manufacturing near-net-shaped structures economically, especially for thin and intricate aerospace components. This paper presents experimental results based on nano-treating, an emerging nanotechnology-enabled manufacturing method by incorporating a low fraction of nanoparticles in liquid aluminum, to allow the casting of complex aluminum alloy 7075 parts. Vacuum fluidity tests demonstrated that nano-treating of aluminum alloy 7075 with only 0.5 vol% TiC nanoparticles increased the fluidity of aluminum alloy 7075 by more than 20%, effectively eliminating hot cracking and enhancing surface quality. Through the Rapid Investment Casting process, nano-treated aluminum alloy 7075 can be successfully cast into turbines with 0.5 mm thick blades. In contrast, aluminum alloy 7075 without nano-treating failed to produce good casting quality due to poor filling and severe cracks. The manufacturing trials highlight the significant improvement in castability achieved through nano-treating, opening a novel pathway for the cost-effective production of complex aluminum alloy 7075 structures for numerous applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信