Bijan Fallah, Masoud Rostami, Iulii Didovets, Zhiwen Dong
{"title":"高分辨率 CMIP6 分析凸显高寒地带和西藏冻土带新出现的气候挑战","authors":"Bijan Fallah, Masoud Rostami, Iulii Didovets, Zhiwen Dong","doi":"10.1002/met.70001","DOIUrl":null,"url":null,"abstract":"<p>We employ a high-resolution Köppen climate classification dataset to examine shifts in Tundra zones within the Alps and Asia. Our analysis shows substantial reductions in Tundra areas by the mid-21st century under different Shared. Socioeconomic pathways (SSP1-2.6, SSP3-7.0, SSP5-8.5). Tundra zones in the Alps and the Tibetan Plateau are crucial for their unique climates and role as water reservoirs. Characterized by short, mild summers and long, severe winters, these zones are vital for the glaciers and perennial snow. The projected climate instability may significantly reduce alpine snow cover by mid-century with irreversible consequences. A 2°C temperature increase from the 1981–2010 baseline could eliminate the Tundra climate in the Alps and reduce it by over 70% in Asia. This is particularly concerning given that rivers from the Tibetan Plateau sustain nearly 40% of the global population.</p>","PeriodicalId":49825,"journal":{"name":"Meteorological Applications","volume":"31 5","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/met.70001","citationCount":"0","resultStr":"{\"title\":\"High-resolution CMIP6 analysis highlights emerging climate challenges in alpine and Tibetan Tundra zones\",\"authors\":\"Bijan Fallah, Masoud Rostami, Iulii Didovets, Zhiwen Dong\",\"doi\":\"10.1002/met.70001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We employ a high-resolution Köppen climate classification dataset to examine shifts in Tundra zones within the Alps and Asia. Our analysis shows substantial reductions in Tundra areas by the mid-21st century under different Shared. Socioeconomic pathways (SSP1-2.6, SSP3-7.0, SSP5-8.5). Tundra zones in the Alps and the Tibetan Plateau are crucial for their unique climates and role as water reservoirs. Characterized by short, mild summers and long, severe winters, these zones are vital for the glaciers and perennial snow. The projected climate instability may significantly reduce alpine snow cover by mid-century with irreversible consequences. A 2°C temperature increase from the 1981–2010 baseline could eliminate the Tundra climate in the Alps and reduce it by over 70% in Asia. This is particularly concerning given that rivers from the Tibetan Plateau sustain nearly 40% of the global population.</p>\",\"PeriodicalId\":49825,\"journal\":{\"name\":\"Meteorological Applications\",\"volume\":\"31 5\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/met.70001\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meteorological Applications\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/met.70001\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteorological Applications","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/met.70001","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
High-resolution CMIP6 analysis highlights emerging climate challenges in alpine and Tibetan Tundra zones
We employ a high-resolution Köppen climate classification dataset to examine shifts in Tundra zones within the Alps and Asia. Our analysis shows substantial reductions in Tundra areas by the mid-21st century under different Shared. Socioeconomic pathways (SSP1-2.6, SSP3-7.0, SSP5-8.5). Tundra zones in the Alps and the Tibetan Plateau are crucial for their unique climates and role as water reservoirs. Characterized by short, mild summers and long, severe winters, these zones are vital for the glaciers and perennial snow. The projected climate instability may significantly reduce alpine snow cover by mid-century with irreversible consequences. A 2°C temperature increase from the 1981–2010 baseline could eliminate the Tundra climate in the Alps and reduce it by over 70% in Asia. This is particularly concerning given that rivers from the Tibetan Plateau sustain nearly 40% of the global population.
期刊介绍:
The aim of Meteorological Applications is to serve the needs of applied meteorologists, forecasters and users of meteorological services by publishing papers on all aspects of meteorological science, including:
applications of meteorological, climatological, analytical and forecasting data, and their socio-economic benefits;
forecasting, warning and service delivery techniques and methods;
weather hazards, their analysis and prediction;
performance, verification and value of numerical models and forecasting services;
practical applications of ocean and climate models;
education and training.