关于不粘性电子和霍尔磁流体动力学方程中的两个守恒量

IF 1.3 2区 数学 Q1 MATHEMATICS
Yanqing Wang , Jing Yang , Yulin Ye
{"title":"关于不粘性电子和霍尔磁流体动力学方程中的两个守恒量","authors":"Yanqing Wang ,&nbsp;Jing Yang ,&nbsp;Yulin Ye","doi":"10.1016/j.na.2024.113668","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we are concerned with the conservation of energy and magnetic helicity of weak solutions for both the electron and Hall magnetohydrodynamic equations. Various energy and magnetic helicity conservation criteria in Onsager’s critical spaces <span><math><msubsup><mrow><munder><mrow><mi>B</mi></mrow><mo>̲</mo></munder></mrow><mrow><mi>p</mi><mo>,</mo><mi>V</mi><mi>M</mi><mi>O</mi></mrow><mrow><mi>α</mi></mrow></msubsup></math></span> and <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>c</mi><mrow><mo>(</mo><mi>N</mi><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msubsup></math></span> in these systems are established. Furthermore, we observe that the conservation criteria for energy and magnetic helicity in the EMHD equations correspond to the helicity and energy conservation principles in ideal incompressible Euler equations, respectively.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"250 ","pages":"Article 113668"},"PeriodicalIF":1.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On two conserved quantities in the inviscid electron and Hall magnetohydrodynamic equations\",\"authors\":\"Yanqing Wang ,&nbsp;Jing Yang ,&nbsp;Yulin Ye\",\"doi\":\"10.1016/j.na.2024.113668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we are concerned with the conservation of energy and magnetic helicity of weak solutions for both the electron and Hall magnetohydrodynamic equations. Various energy and magnetic helicity conservation criteria in Onsager’s critical spaces <span><math><msubsup><mrow><munder><mrow><mi>B</mi></mrow><mo>̲</mo></munder></mrow><mrow><mi>p</mi><mo>,</mo><mi>V</mi><mi>M</mi><mi>O</mi></mrow><mrow><mi>α</mi></mrow></msubsup></math></span> and <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>c</mi><mrow><mo>(</mo><mi>N</mi><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msubsup></math></span> in these systems are established. Furthermore, we observe that the conservation criteria for energy and magnetic helicity in the EMHD equations correspond to the helicity and energy conservation principles in ideal incompressible Euler equations, respectively.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"250 \",\"pages\":\"Article 113668\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24001871\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24001871","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文关注电子和霍尔磁流体动力学方程弱解的能量和磁螺旋度守恒问题。我们建立了这些系统中昂萨格临界空间 B̲p,VMOα和 Bp,c(N)α的各种能量和磁螺旋守恒准则。此外,我们还观察到,EMHD 方程中的能量和磁螺旋度守恒准则分别对应于理想不可压缩欧拉方程中的螺旋度和能量守恒原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On two conserved quantities in the inviscid electron and Hall magnetohydrodynamic equations
In this paper, we are concerned with the conservation of energy and magnetic helicity of weak solutions for both the electron and Hall magnetohydrodynamic equations. Various energy and magnetic helicity conservation criteria in Onsager’s critical spaces B̲p,VMOα and Bp,c(N)α in these systems are established. Furthermore, we observe that the conservation criteria for energy and magnetic helicity in the EMHD equations correspond to the helicity and energy conservation principles in ideal incompressible Euler equations, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信