利用重离子聚变反应合成的重核和超重核的复合核形成概率

{"title":"利用重离子聚变反应合成的重核和超重核的复合核形成概率","authors":"","doi":"10.1016/j.nucana.2024.100123","DOIUrl":null,"url":null,"abstract":"<div><div>The role of entrance channel parameters such as <span><math><mrow><msup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mi>A</mi></mrow></math></span>, charge asymmetry <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>z</mi></mrow></msub></math></span>, mass-asymmetry (<span><math><msub><mrow><mi>η</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span>), charge product (<span><math><mrow><msub><mrow><mi>Z</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>), mean fissility <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>, Coulomb interaction parameter and <span><math><mrow><mrow><mo>(</mo><mi>N</mi><mo>−</mo><mi>Z</mi><mo>)</mo></mrow><mo>/</mo><mrow><mo>(</mo><mi>N</mi><mo>+</mo><mi>Z</mi><mo>)</mo></mrow></mrow></math></span> on compound nucleus formation of actinide nuclei using heavy ion fusion reactions were investigated. For the formation of compound nuclei, the considered atomic number range of the projectile varies between <span><math><mrow><mn>5</mn><mo>≤</mo><mi>Z</mi><mo>≤</mo><mn>14</mn></mrow></math></span> and the mass number lies between <span><math><mrow><mn>10</mn><mo>≤</mo><mi>A</mi><mo>≤</mo><mn>34</mn></mrow></math></span>. Similarly, the studied target atomic number varies between <span><math><mrow><mn>78</mn><mo>≤</mo><mi>Z</mi><mo>≤</mo><mn>92</mn></mrow></math></span> and the mass number range is <span><math><mrow><mn>197</mn><mo>≤</mo><mi>A</mi><mo>≤</mo><mn>238</mn></mrow></math></span>. Among these entrance channel parameters, <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>C</mi><mi>N</mi></mrow></msub></math></span> is more systematic for <span><math><mfrac><mrow><mrow><mo>(</mo><mi>N</mi><mo>−</mo><mi>Z</mi><mo>)</mo></mrow></mrow><mrow><mrow><mo>(</mo><mi>N</mi><mo>+</mo><mi>Z</mi><mo>)</mo></mrow></mrow></mfrac></math></span>, <span><math><mrow><msup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mi>A</mi></mrow></math></span> and <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>z</mi></mrow></msub></math></span>. In addition to entrance channel parameters, the <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>c</mi><mi>m</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>B</mi><mi>a</mi><mi>s</mi><mi>s</mi></mrow></msub></math></span> also play a significant role in the prediction of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>C</mi><mi>N</mi></mrow></msub></math></span>. The proposed empirical formulae are applicable to the compound nuclei from Fr to Sg. These findings are significant for the <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>C</mi><mi>N</mi></mrow></msub></math></span> prediction from Fr to Sg.</div></div>","PeriodicalId":100965,"journal":{"name":"Nuclear Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compound nucleus formation probability of heavy and superheavy nuclei synthesized using heavy ion fusion reactions\",\"authors\":\"\",\"doi\":\"10.1016/j.nucana.2024.100123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The role of entrance channel parameters such as <span><math><mrow><msup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mi>A</mi></mrow></math></span>, charge asymmetry <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>z</mi></mrow></msub></math></span>, mass-asymmetry (<span><math><msub><mrow><mi>η</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span>), charge product (<span><math><mrow><msub><mrow><mi>Z</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>), mean fissility <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>, Coulomb interaction parameter and <span><math><mrow><mrow><mo>(</mo><mi>N</mi><mo>−</mo><mi>Z</mi><mo>)</mo></mrow><mo>/</mo><mrow><mo>(</mo><mi>N</mi><mo>+</mo><mi>Z</mi><mo>)</mo></mrow></mrow></math></span> on compound nucleus formation of actinide nuclei using heavy ion fusion reactions were investigated. For the formation of compound nuclei, the considered atomic number range of the projectile varies between <span><math><mrow><mn>5</mn><mo>≤</mo><mi>Z</mi><mo>≤</mo><mn>14</mn></mrow></math></span> and the mass number lies between <span><math><mrow><mn>10</mn><mo>≤</mo><mi>A</mi><mo>≤</mo><mn>34</mn></mrow></math></span>. Similarly, the studied target atomic number varies between <span><math><mrow><mn>78</mn><mo>≤</mo><mi>Z</mi><mo>≤</mo><mn>92</mn></mrow></math></span> and the mass number range is <span><math><mrow><mn>197</mn><mo>≤</mo><mi>A</mi><mo>≤</mo><mn>238</mn></mrow></math></span>. Among these entrance channel parameters, <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>C</mi><mi>N</mi></mrow></msub></math></span> is more systematic for <span><math><mfrac><mrow><mrow><mo>(</mo><mi>N</mi><mo>−</mo><mi>Z</mi><mo>)</mo></mrow></mrow><mrow><mrow><mo>(</mo><mi>N</mi><mo>+</mo><mi>Z</mi><mo>)</mo></mrow></mrow></mfrac></math></span>, <span><math><mrow><msup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mi>A</mi></mrow></math></span> and <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>z</mi></mrow></msub></math></span>. In addition to entrance channel parameters, the <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>c</mi><mi>m</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>B</mi><mi>a</mi><mi>s</mi><mi>s</mi></mrow></msub></math></span> also play a significant role in the prediction of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>C</mi><mi>N</mi></mrow></msub></math></span>. The proposed empirical formulae are applicable to the compound nuclei from Fr to Sg. These findings are significant for the <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>C</mi><mi>N</mi></mrow></msub></math></span> prediction from Fr to Sg.</div></div>\",\"PeriodicalId\":100965,\"journal\":{\"name\":\"Nuclear Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773183924000235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773183924000235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了入口通道参数,如 Z2/A、电荷不对称性 αz、质量不对称性 (ηA)、电荷乘积 (Z1Z2)、平均裂变率 χm、库仑相互作用参数和 (N-Z)/(N+Z) 对利用重离子聚变反应形成锕系核的复合核的作用。为了形成复合核,考虑的射弹原子序数范围在 5≤Z≤14 之间,质量数在 10≤A≤34 之间。同样,研究的靶原子序数在 78≤Z≤92 之间变化,质量数范围为 197≤A≤238。在这些入口通道参数中,(N-Z)(N+Z)、Z2/A 和 αz 的 PCN 更有系统性。除入口通道参数外,Ecm 和 EBass 对 PCN 的预测也起着重要作用。所提出的经验公式适用于从 Fr 到 Sg 的化合物核。这些发现对于从 Fr 到 Sg 的 PCN 预测具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compound nucleus formation probability of heavy and superheavy nuclei synthesized using heavy ion fusion reactions
The role of entrance channel parameters such as Z2/A, charge asymmetry αz, mass-asymmetry (ηA), charge product (Z1Z2), mean fissility χm, Coulomb interaction parameter and (NZ)/(N+Z) on compound nucleus formation of actinide nuclei using heavy ion fusion reactions were investigated. For the formation of compound nuclei, the considered atomic number range of the projectile varies between 5Z14 and the mass number lies between 10A34. Similarly, the studied target atomic number varies between 78Z92 and the mass number range is 197A238. Among these entrance channel parameters, PCN is more systematic for (NZ)(N+Z), Z2/A and αz. In addition to entrance channel parameters, the Ecm and EBass also play a significant role in the prediction of PCN. The proposed empirical formulae are applicable to the compound nuclei from Fr to Sg. These findings are significant for the PCN prediction from Fr to Sg.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信