动态 W⁎ 对应关系的近似特性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
K. De Commer, J. De Ro
{"title":"动态 W⁎ 对应关系的近似特性","authors":"K. De Commer,&nbsp;J. De Ro","doi":"10.1016/j.aim.2024.109958","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a locally compact quantum group, and <span><math><mi>A</mi><mo>,</mo><mi>B</mi></math></span> von Neumann algebras on which <span><math><mi>G</mi></math></span> acts. We refer to these as <span><math><mi>G</mi></math></span><em>-dynamical W</em><sup>⁎</sup><em>-algebras</em>. We make a study of <span><math><mi>G</mi></math></span>-equivariant <em>A</em>-<em>B</em>-correspondences, that is, Hilbert spaces <span><math><mi>H</mi></math></span> with an <em>A</em>-<em>B</em>-bimodule structure by ⁎-preserving normal maps, and equipped with a unitary representation of <span><math><mi>G</mi></math></span> which is equivariant with respect to the above bimodule structure. Such structures are a Hilbert space version of the theory of <span><math><mi>G</mi></math></span>-equivariant Hilbert C<sup>⁎</sup>-bimodules. We show that there is a well-defined Fell topology on equivariant correspondences, and use this to formulate approximation properties for them. Within this formalism, we then characterize amenability of the action of a locally compact group on a von Neumann algebra, using recent results due to Bearden and Crann. We further consider natural operations on equivariant correspondences such as taking opposites, composites and crossed products, and examine the continuity of these operations with respect to the Fell topology.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation properties for dynamical W⁎-correspondences\",\"authors\":\"K. De Commer,&nbsp;J. De Ro\",\"doi\":\"10.1016/j.aim.2024.109958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>G</mi></math></span> be a locally compact quantum group, and <span><math><mi>A</mi><mo>,</mo><mi>B</mi></math></span> von Neumann algebras on which <span><math><mi>G</mi></math></span> acts. We refer to these as <span><math><mi>G</mi></math></span><em>-dynamical W</em><sup>⁎</sup><em>-algebras</em>. We make a study of <span><math><mi>G</mi></math></span>-equivariant <em>A</em>-<em>B</em>-correspondences, that is, Hilbert spaces <span><math><mi>H</mi></math></span> with an <em>A</em>-<em>B</em>-bimodule structure by ⁎-preserving normal maps, and equipped with a unitary representation of <span><math><mi>G</mi></math></span> which is equivariant with respect to the above bimodule structure. Such structures are a Hilbert space version of the theory of <span><math><mi>G</mi></math></span>-equivariant Hilbert C<sup>⁎</sup>-bimodules. We show that there is a well-defined Fell topology on equivariant correspondences, and use this to formulate approximation properties for them. Within this formalism, we then characterize amenability of the action of a locally compact group on a von Neumann algebra, using recent results due to Bearden and Crann. We further consider natural operations on equivariant correspondences such as taking opposites, composites and crossed products, and examine the continuity of these operations with respect to the Fell topology.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004730\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004730","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

让 G 是一个局部紧密的量子群,A,B 是 G 作用于其上的 von Neumann 对象。我们称这些为 G-dynamical W⁎-gebras。我们研究了 G 的等变 A-B 对应,即通过⁎保留的法映射具有 A-B 双模块结构的希尔伯特空间 H,并配备了 G 的单元表示,该表示与上述双模块结构有关。这种结构是 G 等变希尔伯特 C⁎-双模理论的希尔伯特空间版本。我们证明在等变对应关系上存在定义明确的费尔拓扑,并以此为基础提出了等变对应关系的近似性质。在这一形式中,我们利用贝登和克兰恩的最新成果,描述了冯-诺依曼代数上局部紧凑群作用的可近似性。我们进一步考虑了等价对应的自然运算,如取对立面、复合和交叉积,并研究了这些运算在费尔拓扑学方面的连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation properties for dynamical W⁎-correspondences
Let G be a locally compact quantum group, and A,B von Neumann algebras on which G acts. We refer to these as G-dynamical W-algebras. We make a study of G-equivariant A-B-correspondences, that is, Hilbert spaces H with an A-B-bimodule structure by ⁎-preserving normal maps, and equipped with a unitary representation of G which is equivariant with respect to the above bimodule structure. Such structures are a Hilbert space version of the theory of G-equivariant Hilbert C-bimodules. We show that there is a well-defined Fell topology on equivariant correspondences, and use this to formulate approximation properties for them. Within this formalism, we then characterize amenability of the action of a locally compact group on a von Neumann algebra, using recent results due to Bearden and Crann. We further consider natural operations on equivariant correspondences such as taking opposites, composites and crossed products, and examine the continuity of these operations with respect to the Fell topology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信