{"title":"动态 W⁎ 对应关系的近似特性","authors":"K. De Commer, J. De Ro","doi":"10.1016/j.aim.2024.109958","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a locally compact quantum group, and <span><math><mi>A</mi><mo>,</mo><mi>B</mi></math></span> von Neumann algebras on which <span><math><mi>G</mi></math></span> acts. We refer to these as <span><math><mi>G</mi></math></span><em>-dynamical W</em><sup>⁎</sup><em>-algebras</em>. We make a study of <span><math><mi>G</mi></math></span>-equivariant <em>A</em>-<em>B</em>-correspondences, that is, Hilbert spaces <span><math><mi>H</mi></math></span> with an <em>A</em>-<em>B</em>-bimodule structure by ⁎-preserving normal maps, and equipped with a unitary representation of <span><math><mi>G</mi></math></span> which is equivariant with respect to the above bimodule structure. Such structures are a Hilbert space version of the theory of <span><math><mi>G</mi></math></span>-equivariant Hilbert C<sup>⁎</sup>-bimodules. We show that there is a well-defined Fell topology on equivariant correspondences, and use this to formulate approximation properties for them. Within this formalism, we then characterize amenability of the action of a locally compact group on a von Neumann algebra, using recent results due to Bearden and Crann. We further consider natural operations on equivariant correspondences such as taking opposites, composites and crossed products, and examine the continuity of these operations with respect to the Fell topology.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109958"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation properties for dynamical W⁎-correspondences\",\"authors\":\"K. De Commer, J. De Ro\",\"doi\":\"10.1016/j.aim.2024.109958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>G</mi></math></span> be a locally compact quantum group, and <span><math><mi>A</mi><mo>,</mo><mi>B</mi></math></span> von Neumann algebras on which <span><math><mi>G</mi></math></span> acts. We refer to these as <span><math><mi>G</mi></math></span><em>-dynamical W</em><sup>⁎</sup><em>-algebras</em>. We make a study of <span><math><mi>G</mi></math></span>-equivariant <em>A</em>-<em>B</em>-correspondences, that is, Hilbert spaces <span><math><mi>H</mi></math></span> with an <em>A</em>-<em>B</em>-bimodule structure by ⁎-preserving normal maps, and equipped with a unitary representation of <span><math><mi>G</mi></math></span> which is equivariant with respect to the above bimodule structure. Such structures are a Hilbert space version of the theory of <span><math><mi>G</mi></math></span>-equivariant Hilbert C<sup>⁎</sup>-bimodules. We show that there is a well-defined Fell topology on equivariant correspondences, and use this to formulate approximation properties for them. Within this formalism, we then characterize amenability of the action of a locally compact group on a von Neumann algebra, using recent results due to Bearden and Crann. We further consider natural operations on equivariant correspondences such as taking opposites, composites and crossed products, and examine the continuity of these operations with respect to the Fell topology.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"458 \",\"pages\":\"Article 109958\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004730\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004730","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 G 是一个局部紧密的量子群,A,B 是 G 作用于其上的 von Neumann 对象。我们称这些为 G-dynamical W⁎-gebras。我们研究了 G 的等变 A-B 对应,即通过⁎保留的法映射具有 A-B 双模块结构的希尔伯特空间 H,并配备了 G 的单元表示,该表示与上述双模块结构有关。这种结构是 G 等变希尔伯特 C⁎-双模理论的希尔伯特空间版本。我们证明在等变对应关系上存在定义明确的费尔拓扑,并以此为基础提出了等变对应关系的近似性质。在这一形式中,我们利用贝登和克兰恩的最新成果,描述了冯-诺依曼代数上局部紧凑群作用的可近似性。我们进一步考虑了等价对应的自然运算,如取对立面、复合和交叉积,并研究了这些运算在费尔拓扑学方面的连续性。
Approximation properties for dynamical W⁎-correspondences
Let be a locally compact quantum group, and von Neumann algebras on which acts. We refer to these as -dynamical W⁎-algebras. We make a study of -equivariant A-B-correspondences, that is, Hilbert spaces with an A-B-bimodule structure by ⁎-preserving normal maps, and equipped with a unitary representation of which is equivariant with respect to the above bimodule structure. Such structures are a Hilbert space version of the theory of -equivariant Hilbert C⁎-bimodules. We show that there is a well-defined Fell topology on equivariant correspondences, and use this to formulate approximation properties for them. Within this formalism, we then characterize amenability of the action of a locally compact group on a von Neumann algebra, using recent results due to Bearden and Crann. We further consider natural operations on equivariant correspondences such as taking opposites, composites and crossed products, and examine the continuity of these operations with respect to the Fell topology.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.