Ruixin Gong , Lianqing Zhu , Qingsong Feng , Lidan Lu , Bingfeng Liu , Yuhao Chen , Yuanbo Zhang , Shiya Zhang , Yang Chen , Zhiying Liu
{"title":"III-V 族半导体的电子和光学特性:砷化物和锑化物","authors":"Ruixin Gong , Lianqing Zhu , Qingsong Feng , Lidan Lu , Bingfeng Liu , Yuhao Chen , Yuanbo Zhang , Shiya Zhang , Yang Chen , Zhiying Liu","doi":"10.1016/j.commatsci.2024.113381","DOIUrl":null,"url":null,"abstract":"<div><div>Investigating the structural, electronic, and optical properties of zinc-blende III-V semiconductors, particularly arsenides, and antimonides, which are crucial for optoelectronic devices such as transistors, infrared detectors, and quantum technologies due to their wide range of direct bandgaps. In this work, we have employed a first-principles approach integrating G<sub>0</sub>W<sub>0</sub> with the HSE06 hybrid functional and spin–orbit coupling (SOC) to study their fundamental properties. Traditional Density Functional Theory (DFT) methods, particularly those using Generalized Gradient Approximation (GGA) PBE functionals, tend to underestimate bandgaps, leading to discrepancies with experimental results. To address this, our study corrects the bandgap underestimation and refines the calculation of optical constants, including the dielectric function, refractive index, extinction coefficient, and absorption coefficient. Moreover, the optimized lattice constants and electronic properties derived from our computational model strongly correlate with experimental data, demonstrating the model’s reliability in predicting material properties. The findings suggest that our methods can be applied to arsenides and antimonides, offering a pathway to designing materials with optoelectronic properties involving III-V compounds and their complex heterostructures for advanced device applications.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"246 ","pages":"Article 113381"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The electronic and optical properties of group III-V semiconductors: Arsenides and Antimonides\",\"authors\":\"Ruixin Gong , Lianqing Zhu , Qingsong Feng , Lidan Lu , Bingfeng Liu , Yuhao Chen , Yuanbo Zhang , Shiya Zhang , Yang Chen , Zhiying Liu\",\"doi\":\"10.1016/j.commatsci.2024.113381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Investigating the structural, electronic, and optical properties of zinc-blende III-V semiconductors, particularly arsenides, and antimonides, which are crucial for optoelectronic devices such as transistors, infrared detectors, and quantum technologies due to their wide range of direct bandgaps. In this work, we have employed a first-principles approach integrating G<sub>0</sub>W<sub>0</sub> with the HSE06 hybrid functional and spin–orbit coupling (SOC) to study their fundamental properties. Traditional Density Functional Theory (DFT) methods, particularly those using Generalized Gradient Approximation (GGA) PBE functionals, tend to underestimate bandgaps, leading to discrepancies with experimental results. To address this, our study corrects the bandgap underestimation and refines the calculation of optical constants, including the dielectric function, refractive index, extinction coefficient, and absorption coefficient. Moreover, the optimized lattice constants and electronic properties derived from our computational model strongly correlate with experimental data, demonstrating the model’s reliability in predicting material properties. The findings suggest that our methods can be applied to arsenides and antimonides, offering a pathway to designing materials with optoelectronic properties involving III-V compounds and their complex heterostructures for advanced device applications.</div></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":\"246 \",\"pages\":\"Article 113381\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025624006025\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624006025","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
The electronic and optical properties of group III-V semiconductors: Arsenides and Antimonides
Investigating the structural, electronic, and optical properties of zinc-blende III-V semiconductors, particularly arsenides, and antimonides, which are crucial for optoelectronic devices such as transistors, infrared detectors, and quantum technologies due to their wide range of direct bandgaps. In this work, we have employed a first-principles approach integrating G0W0 with the HSE06 hybrid functional and spin–orbit coupling (SOC) to study their fundamental properties. Traditional Density Functional Theory (DFT) methods, particularly those using Generalized Gradient Approximation (GGA) PBE functionals, tend to underestimate bandgaps, leading to discrepancies with experimental results. To address this, our study corrects the bandgap underestimation and refines the calculation of optical constants, including the dielectric function, refractive index, extinction coefficient, and absorption coefficient. Moreover, the optimized lattice constants and electronic properties derived from our computational model strongly correlate with experimental data, demonstrating the model’s reliability in predicting material properties. The findings suggest that our methods can be applied to arsenides and antimonides, offering a pathway to designing materials with optoelectronic properties involving III-V compounds and their complex heterostructures for advanced device applications.
期刊介绍:
The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.