{"title":"自动机网络的内在普遍性 III:关于对称性与非同步性","authors":"Martín Ríos-Wilson , Guillaume Theyssier","doi":"10.1016/j.tcs.2024.114890","DOIUrl":null,"url":null,"abstract":"<div><div>An automata network is a finite assembly of interconnected entities endowed with a set of local maps defined over a common finite alphabet. These relationships are represented through an interaction graph. Together with the local functions, an assignment known as an update scheme directs the evolution of the network by updating specific subsets of entities at discrete time steps. Despite the scrutiny of interaction graphs and update schemes, their profound impact on automata network dynamics remains largely open. This work investigates the intricate interplay between these aspects, with a focus on how update schemes can counterbalance constraints stemming from symmetric local interactions. This paper is the third of a series about intrinsic universality, a notion that assesses both dynamical and computational complexity, encompassing transient behaviors, attractors, and prediction or reachability problems. We consider four update modes—parallel, block-sequential, local clocks, and general periodic— along with several families of symmetric signed conjunctive boolean networks defined by local constraints on signs. Our main result is to show a diagonal complexity leap in this two-dimensional landscape: the stronger the local constraints the higher the level of asynchrony required to obtain intrinsic universality or increase in complexity. We also show how in some cases asynchronism allows to simulate directed interactions from undirected ones with the same local rules.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1022 ","pages":"Article 114890"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intrinsic universality in automata networks III: On symmetry versus asynchrony\",\"authors\":\"Martín Ríos-Wilson , Guillaume Theyssier\",\"doi\":\"10.1016/j.tcs.2024.114890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An automata network is a finite assembly of interconnected entities endowed with a set of local maps defined over a common finite alphabet. These relationships are represented through an interaction graph. Together with the local functions, an assignment known as an update scheme directs the evolution of the network by updating specific subsets of entities at discrete time steps. Despite the scrutiny of interaction graphs and update schemes, their profound impact on automata network dynamics remains largely open. This work investigates the intricate interplay between these aspects, with a focus on how update schemes can counterbalance constraints stemming from symmetric local interactions. This paper is the third of a series about intrinsic universality, a notion that assesses both dynamical and computational complexity, encompassing transient behaviors, attractors, and prediction or reachability problems. We consider four update modes—parallel, block-sequential, local clocks, and general periodic— along with several families of symmetric signed conjunctive boolean networks defined by local constraints on signs. Our main result is to show a diagonal complexity leap in this two-dimensional landscape: the stronger the local constraints the higher the level of asynchrony required to obtain intrinsic universality or increase in complexity. We also show how in some cases asynchronism allows to simulate directed interactions from undirected ones with the same local rules.</div></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1022 \",\"pages\":\"Article 114890\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397524005073\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524005073","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Intrinsic universality in automata networks III: On symmetry versus asynchrony
An automata network is a finite assembly of interconnected entities endowed with a set of local maps defined over a common finite alphabet. These relationships are represented through an interaction graph. Together with the local functions, an assignment known as an update scheme directs the evolution of the network by updating specific subsets of entities at discrete time steps. Despite the scrutiny of interaction graphs and update schemes, their profound impact on automata network dynamics remains largely open. This work investigates the intricate interplay between these aspects, with a focus on how update schemes can counterbalance constraints stemming from symmetric local interactions. This paper is the third of a series about intrinsic universality, a notion that assesses both dynamical and computational complexity, encompassing transient behaviors, attractors, and prediction or reachability problems. We consider four update modes—parallel, block-sequential, local clocks, and general periodic— along with several families of symmetric signed conjunctive boolean networks defined by local constraints on signs. Our main result is to show a diagonal complexity leap in this two-dimensional landscape: the stronger the local constraints the higher the level of asynchrony required to obtain intrinsic universality or increase in complexity. We also show how in some cases asynchronism allows to simulate directed interactions from undirected ones with the same local rules.
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.