西尔皮斯基垫圈上的分数稳定随机场

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Fabrice Baudoin , Céline Lacaux
{"title":"西尔皮斯基垫圈上的分数稳定随机场","authors":"Fabrice Baudoin ,&nbsp;Céline Lacaux","doi":"10.1016/j.spa.2024.104481","DOIUrl":null,"url":null,"abstract":"<div><div>We define and study fractional stable random fields on the Sierpiński gasket. Such fields are formally defined as <span><math><mrow><msup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mi>s</mi></mrow></msup><msub><mrow><mi>W</mi></mrow><mrow><mi>K</mi><mo>,</mo><mi>α</mi></mrow></msub></mrow></math></span>, where <span><math><mi>Δ</mi></math></span> is the Laplace operator on the gasket and <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>K</mi><mo>,</mo><mi>α</mi></mrow></msub></math></span> is a stable random measure. Both Neumann and Dirichlet boundary conditions for <span><math><mi>Δ</mi></math></span> are considered. Sample paths regularity and scaling properties are obtained. The techniques we develop are general and extend to the more general setting of the Barlow fractional spaces.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"178 ","pages":"Article 104481"},"PeriodicalIF":1.1000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional stable random fields on the Sierpiński gasket\",\"authors\":\"Fabrice Baudoin ,&nbsp;Céline Lacaux\",\"doi\":\"10.1016/j.spa.2024.104481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We define and study fractional stable random fields on the Sierpiński gasket. Such fields are formally defined as <span><math><mrow><msup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mi>s</mi></mrow></msup><msub><mrow><mi>W</mi></mrow><mrow><mi>K</mi><mo>,</mo><mi>α</mi></mrow></msub></mrow></math></span>, where <span><math><mi>Δ</mi></math></span> is the Laplace operator on the gasket and <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>K</mi><mo>,</mo><mi>α</mi></mrow></msub></math></span> is a stable random measure. Both Neumann and Dirichlet boundary conditions for <span><math><mi>Δ</mi></math></span> are considered. Sample paths regularity and scaling properties are obtained. The techniques we develop are general and extend to the more general setting of the Barlow fractional spaces.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"178 \",\"pages\":\"Article 104481\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030441492400187X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030441492400187X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们定义并研究了西尔潘斯基垫圈上的分数稳定随机场。这种场的形式定义为 (-Δ)-sWK,α,其中 Δ 是垫圈上的拉普拉斯算子,WK,α 是稳定随机量。对 Δ 的 Neumann 和 Dirichlet 边界条件都进行了考虑。我们获得了样本路径正则性和缩放特性。我们开发的技术是通用的,并可扩展到巴洛分式空间的更一般设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional stable random fields on the Sierpiński gasket
We define and study fractional stable random fields on the Sierpiński gasket. Such fields are formally defined as (Δ)sWK,α, where Δ is the Laplace operator on the gasket and WK,α is a stable random measure. Both Neumann and Dirichlet boundary conditions for Δ are considered. Sample paths regularity and scaling properties are obtained. The techniques we develop are general and extend to the more general setting of the Barlow fractional spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信