利用 SCAPS-1D 软件优化无铅 CH3NH3SnI3 包晶太阳能电池

Md Nahiduzzaman Nahid , Md Salman Shah , Hayati Mamur , Rakib Hosen , Mohammad Ruhul Amin Bhuiyan
{"title":"利用 SCAPS-1D 软件优化无铅 CH3NH3SnI3 包晶太阳能电池","authors":"Md Nahiduzzaman Nahid ,&nbsp;Md Salman Shah ,&nbsp;Hayati Mamur ,&nbsp;Rakib Hosen ,&nbsp;Mohammad Ruhul Amin Bhuiyan","doi":"10.1016/j.cinorg.2024.100069","DOIUrl":null,"url":null,"abstract":"<div><div>The lead-free CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub> perovskite is essential for absorbing light in perovskite solar cells (PSCs). In a photovoltaic (PV) device setup of FTO/STO/CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>/Spiro-OMeTAD/Au, it demonstrates excellent PV performance. This device includes sulfur-doped tin oxide (STO) for the layer of electron transport (ETL), CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub> as the absorber, and the hole transport layer (HTL) is Spiro-OMeTAD. The upper and back contacts consist of fluorine-doped tin oxide (FTO) and gold (Au), connecting these layers. Several parameters were estimated using the Solar Cell Capacitance Simulator (SCAPS-1D) program, including the thickness, acceptor and donor densities, series and shunt resistances, and temperature. The absorber, HTL, ETL, and FTO thicknesses were set at 1000 ​nm, 100 ​nm, 150 ​nm, and 50 ​nm, respectively, to find the perfect configuration. Densities of acceptors and donors were maintained at 10<sup>19</sup> ​cm<sup>−3</sup>, 2.0 ​× ​10<sup>19</sup> ​cm<sup>−3</sup>, 2.0 ​× ​10<sup>18</sup> ​cm<sup>−3</sup>, and 10<sup>18</sup> ​cm<sup>−3</sup> for the absorber, HTL, ETL, and FTO, respectively, at an operating temperature of 300K. The device configuration exhibited reduced series resistance and increased shunt resistance, optimized with a back contact metal of Au. The idealized model demonstrated significant PV execution characteristics, including 1.117 ​V for open-circuit voltage (V<sub>OC</sub>), 28.88 ​mA/cm<sup>2</sup> for short-circuit current density (J<sub>SC</sub>), 88.47 ​% for fill factor (FF), and 28.55 ​% for power conversion efficiency (PCE) under the AM1.5G spectrum. Additionally, the device displayed an average quantum efficiency (QE) of approximately 88.30 ​% at visible light wavelengths.</div></div>","PeriodicalId":100233,"journal":{"name":"Chemistry of Inorganic Materials","volume":"4 ","pages":"Article 100069"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing lead-free CH3NH3SnI3 perovskite solar cells by using SCAPS-1D software\",\"authors\":\"Md Nahiduzzaman Nahid ,&nbsp;Md Salman Shah ,&nbsp;Hayati Mamur ,&nbsp;Rakib Hosen ,&nbsp;Mohammad Ruhul Amin Bhuiyan\",\"doi\":\"10.1016/j.cinorg.2024.100069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The lead-free CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub> perovskite is essential for absorbing light in perovskite solar cells (PSCs). In a photovoltaic (PV) device setup of FTO/STO/CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>/Spiro-OMeTAD/Au, it demonstrates excellent PV performance. This device includes sulfur-doped tin oxide (STO) for the layer of electron transport (ETL), CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub> as the absorber, and the hole transport layer (HTL) is Spiro-OMeTAD. The upper and back contacts consist of fluorine-doped tin oxide (FTO) and gold (Au), connecting these layers. Several parameters were estimated using the Solar Cell Capacitance Simulator (SCAPS-1D) program, including the thickness, acceptor and donor densities, series and shunt resistances, and temperature. The absorber, HTL, ETL, and FTO thicknesses were set at 1000 ​nm, 100 ​nm, 150 ​nm, and 50 ​nm, respectively, to find the perfect configuration. Densities of acceptors and donors were maintained at 10<sup>19</sup> ​cm<sup>−3</sup>, 2.0 ​× ​10<sup>19</sup> ​cm<sup>−3</sup>, 2.0 ​× ​10<sup>18</sup> ​cm<sup>−3</sup>, and 10<sup>18</sup> ​cm<sup>−3</sup> for the absorber, HTL, ETL, and FTO, respectively, at an operating temperature of 300K. The device configuration exhibited reduced series resistance and increased shunt resistance, optimized with a back contact metal of Au. The idealized model demonstrated significant PV execution characteristics, including 1.117 ​V for open-circuit voltage (V<sub>OC</sub>), 28.88 ​mA/cm<sup>2</sup> for short-circuit current density (J<sub>SC</sub>), 88.47 ​% for fill factor (FF), and 28.55 ​% for power conversion efficiency (PCE) under the AM1.5G spectrum. Additionally, the device displayed an average quantum efficiency (QE) of approximately 88.30 ​% at visible light wavelengths.</div></div>\",\"PeriodicalId\":100233,\"journal\":{\"name\":\"Chemistry of Inorganic Materials\",\"volume\":\"4 \",\"pages\":\"Article 100069\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry of Inorganic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949746924000375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Inorganic Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949746924000375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无铅 CH3NH3SnI3 包晶体是包晶体太阳能电池(PSC)吸收光线的关键。在 FTO/STO/CH3NH3SnI3/Spiro-OMeTAD/Au 的光伏(PV)器件设置中,它表现出了卓越的光伏性能。该器件的电子传输层(ETL)为掺硫氧化锡(STO),吸收层为 CH3NH3SnI3,空穴传输层(HTL)为螺烯-OMeTAD。上触点和背触点由掺氟氧化锡(FTO)和金(Au)组成,连接这些层。使用太阳能电池电容模拟器(SCAPS-1D)程序估算了几个参数,包括厚度、受体和供体密度、串联和并联电阻以及温度。吸收体、HTL、ETL 和 FTO 的厚度分别设定为 1000 nm、100 nm、150 nm 和 50 nm,以找到最佳配置。在 300K 工作温度下,吸收体、HTL、ETL 和 FTO 的受体和供体密度分别保持在 1019 cm-3、2.0 × 1019 cm-3、2.0 × 1018 cm-3 和 1018 cm-3。该器件配置显示出串联电阻减小、并联电阻增大的特点,并通过背面接触金属金进行了优化。理想化模型显示了显著的光伏执行特性,包括在 AM1.5G 频谱下开路电压 (VOC) 为 1.117 V、短路电流密度 (JSC) 为 28.88 mA/cm2、填充因子 (FF) 为 88.47 %、功率转换效率 (PCE) 为 28.55 %。此外,该器件在可见光波长下的平均量子效率(QE)约为 88.30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimizing lead-free CH3NH3SnI3 perovskite solar cells by using SCAPS-1D software

Optimizing lead-free CH3NH3SnI3 perovskite solar cells by using SCAPS-1D software
The lead-free CH3NH3SnI3 perovskite is essential for absorbing light in perovskite solar cells (PSCs). In a photovoltaic (PV) device setup of FTO/STO/CH3NH3SnI3/Spiro-OMeTAD/Au, it demonstrates excellent PV performance. This device includes sulfur-doped tin oxide (STO) for the layer of electron transport (ETL), CH3NH3SnI3 as the absorber, and the hole transport layer (HTL) is Spiro-OMeTAD. The upper and back contacts consist of fluorine-doped tin oxide (FTO) and gold (Au), connecting these layers. Several parameters were estimated using the Solar Cell Capacitance Simulator (SCAPS-1D) program, including the thickness, acceptor and donor densities, series and shunt resistances, and temperature. The absorber, HTL, ETL, and FTO thicknesses were set at 1000 ​nm, 100 ​nm, 150 ​nm, and 50 ​nm, respectively, to find the perfect configuration. Densities of acceptors and donors were maintained at 1019 ​cm−3, 2.0 ​× ​1019 ​cm−3, 2.0 ​× ​1018 ​cm−3, and 1018 ​cm−3 for the absorber, HTL, ETL, and FTO, respectively, at an operating temperature of 300K. The device configuration exhibited reduced series resistance and increased shunt resistance, optimized with a back contact metal of Au. The idealized model demonstrated significant PV execution characteristics, including 1.117 ​V for open-circuit voltage (VOC), 28.88 ​mA/cm2 for short-circuit current density (JSC), 88.47 ​% for fill factor (FF), and 28.55 ​% for power conversion efficiency (PCE) under the AM1.5G spectrum. Additionally, the device displayed an average quantum efficiency (QE) of approximately 88.30 ​% at visible light wavelengths.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信