Valeriy B. Merinov , Pavel A. Kulyamin , Pavel N. D’yachkov
{"title":"超薄单壁铂纳米管的电子结构","authors":"Valeriy B. Merinov , Pavel A. Kulyamin , Pavel N. D’yachkov","doi":"10.1016/j.cplett.2024.141664","DOIUrl":null,"url":null,"abstract":"<div><div>Using Density Functional Theory based on the plane wave method and linearized augmented cylindrical wave method, and taking into account the spin–orbit interaction, the structural, electronic and spin properties of ultrathin single-walled nanotubes consisting of six platinum rows are obtained. The nanotubes are found to possess metallic electronic mobility, including the nonchiral Pt(6,0) with the largest number (15<em>G<sub>0</sub></em>) of ballistic channels. Analysis of the density of electronic states at Fermi level revealed that the chiral Pt(5,1) has a difference in concentration of mobile electrons with opposite spins of 1.42 times, and up to 3–4 times under a weak torsional strain.</div></div>","PeriodicalId":273,"journal":{"name":"Chemical Physics Letters","volume":"856 ","pages":"Article 141664"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electronic structure of ultrathin single-walled platinum nanotubes\",\"authors\":\"Valeriy B. Merinov , Pavel A. Kulyamin , Pavel N. D’yachkov\",\"doi\":\"10.1016/j.cplett.2024.141664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Using Density Functional Theory based on the plane wave method and linearized augmented cylindrical wave method, and taking into account the spin–orbit interaction, the structural, electronic and spin properties of ultrathin single-walled nanotubes consisting of six platinum rows are obtained. The nanotubes are found to possess metallic electronic mobility, including the nonchiral Pt(6,0) with the largest number (15<em>G<sub>0</sub></em>) of ballistic channels. Analysis of the density of electronic states at Fermi level revealed that the chiral Pt(5,1) has a difference in concentration of mobile electrons with opposite spins of 1.42 times, and up to 3–4 times under a weak torsional strain.</div></div>\",\"PeriodicalId\":273,\"journal\":{\"name\":\"Chemical Physics Letters\",\"volume\":\"856 \",\"pages\":\"Article 141664\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009261424006067\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009261424006067","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Electronic structure of ultrathin single-walled platinum nanotubes
Using Density Functional Theory based on the plane wave method and linearized augmented cylindrical wave method, and taking into account the spin–orbit interaction, the structural, electronic and spin properties of ultrathin single-walled nanotubes consisting of six platinum rows are obtained. The nanotubes are found to possess metallic electronic mobility, including the nonchiral Pt(6,0) with the largest number (15G0) of ballistic channels. Analysis of the density of electronic states at Fermi level revealed that the chiral Pt(5,1) has a difference in concentration of mobile electrons with opposite spins of 1.42 times, and up to 3–4 times under a weak torsional strain.
期刊介绍:
Chemical Physics Letters has an open access mirror journal, Chemical Physics Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Chemical Physics Letters publishes brief reports on molecules, interfaces, condensed phases, nanomaterials and nanostructures, polymers, biomolecular systems, and energy conversion and storage.
Criteria for publication are quality, urgency and impact. Further, experimental results reported in the journal have direct relevance for theory, and theoretical developments or non-routine computations relate directly to experiment. Manuscripts must satisfy these criteria and should not be minor extensions of previous work.