基于 THB-样条线等距分析的不可压缩流体流动模拟中的自适应细化技术

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Bohumír Bastl, Kristýna Slabá
{"title":"基于 THB-样条线等距分析的不可压缩流体流动模拟中的自适应细化技术","authors":"Bohumír Bastl,&nbsp;Kristýna Slabá","doi":"10.1016/j.matcom.2024.09.016","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we deal with adaptive refinement in numerical simulation of incompressible flow solved by isogeometric analysis. We study various error estimators and compare them with respect to convergence to the exact solution. Further, we propose a new class of error estimators based on stabilization methods for numerical solving of incompressible flow and we show that they provide viable option to standard error estimators. Moreover, we comment on different choices of marking strategies and their suitability to the case of incompressible flow and provide comparison of error estimators also with respect to selected marking strategies and selected representative pairs of discretization spaces in isogeometric analysis.</div></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive refinement in incompressible fluid flow simulation based on THB-splines-powered isogeometric analysis\",\"authors\":\"Bohumír Bastl,&nbsp;Kristýna Slabá\",\"doi\":\"10.1016/j.matcom.2024.09.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we deal with adaptive refinement in numerical simulation of incompressible flow solved by isogeometric analysis. We study various error estimators and compare them with respect to convergence to the exact solution. Further, we propose a new class of error estimators based on stabilization methods for numerical solving of incompressible flow and we show that they provide viable option to standard error estimators. Moreover, we comment on different choices of marking strategies and their suitability to the case of incompressible flow and provide comparison of error estimators also with respect to selected marking strategies and selected representative pairs of discretization spaces in isogeometric analysis.</div></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475424003719\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003719","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们讨论了等几何分析法求解的不可压缩流动数值模拟中的自适应细化问题。我们研究了各种误差估计器,并比较了它们对精确解的收敛性。此外,我们还提出了一类基于稳定方法的新误差估计器,用于不可压缩流的数值求解,并证明它们为标准误差估计器提供了可行的选择。此外,我们还对标记策略的不同选择及其对不可压缩流的适用性进行了评论,并就等几何分析中选定的标记策略和选定的代表性离散空间对误差估计器进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive refinement in incompressible fluid flow simulation based on THB-splines-powered isogeometric analysis
In this paper, we deal with adaptive refinement in numerical simulation of incompressible flow solved by isogeometric analysis. We study various error estimators and compare them with respect to convergence to the exact solution. Further, we propose a new class of error estimators based on stabilization methods for numerical solving of incompressible flow and we show that they provide viable option to standard error estimators. Moreover, we comment on different choices of marking strategies and their suitability to the case of incompressible flow and provide comparison of error estimators also with respect to selected marking strategies and selected representative pairs of discretization spaces in isogeometric analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信