{"title":"使用 UAT 花键求解圆盘上的拉普拉斯方程","authors":"M. Naimi, M. Lamnii","doi":"10.1016/j.matcom.2024.09.004","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we are interested in the resolution of the Laplace equation <span><math><mrow><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>f</mi></mrow></math></span> with Dirichlet boundary condition in a closed surface <span><math><mi>S</mi></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, which is – topologically – equivalent to the unit disc <span><math><mrow><mi>D</mi><mo>=</mo><mrow><mo>{</mo><mfenced><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></mfenced><mo>|</mo><mspace></mspace><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>⩽</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span>. It is known that for a function <span><math><mi>u</mi></math></span> represented in polar coordinates on <span><math><mi>D</mi></math></span>, certain boundary conditions must be satisfied by <span><math><mi>u</mi></math></span> so that the surface <span><math><mi>S</mi></math></span> is of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span>. More precisely, we construct an approximant of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span> on <span><math><mi>D</mi></math></span> as a tensor product of two quasi-interpolants, one based on UAT-splines and the other based on classical B-splines. Some numerical results are given to validate the work.</div></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving the Laplace equation on the disc using the UAT spline\",\"authors\":\"M. Naimi, M. Lamnii\",\"doi\":\"10.1016/j.matcom.2024.09.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we are interested in the resolution of the Laplace equation <span><math><mrow><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>f</mi></mrow></math></span> with Dirichlet boundary condition in a closed surface <span><math><mi>S</mi></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, which is – topologically – equivalent to the unit disc <span><math><mrow><mi>D</mi><mo>=</mo><mrow><mo>{</mo><mfenced><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></mfenced><mo>|</mo><mspace></mspace><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>⩽</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span>. It is known that for a function <span><math><mi>u</mi></math></span> represented in polar coordinates on <span><math><mi>D</mi></math></span>, certain boundary conditions must be satisfied by <span><math><mi>u</mi></math></span> so that the surface <span><math><mi>S</mi></math></span> is of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span>. More precisely, we construct an approximant of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span> on <span><math><mi>D</mi></math></span> as a tensor product of two quasi-interpolants, one based on UAT-splines and the other based on classical B-splines. Some numerical results are given to validate the work.</div></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475424003598\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003598","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
在这项工作中,我们感兴趣的是在 R2 中的封闭曲面 S 上解决带有 Dirichlet 边界条件的拉普拉斯方程 -Δu=f 的问题,该曲面在拓扑上等价于单位圆盘 D={x,y|x2+y2⩽1}。众所周知,对于在 D 上以极坐标表示的函数 u,u 必须满足某些边界条件,这样曲面 S 才属于 C0 类。更确切地说,我们在 D 上构建了一个 C0 类近似值,它是两个准内插值的张量乘积,一个基于 UAT 样条曲线,另一个基于经典 B 样条曲线。我们给出了一些数值结果来验证这项工作。
Solving the Laplace equation on the disc using the UAT spline
In this work, we are interested in the resolution of the Laplace equation with Dirichlet boundary condition in a closed surface in , which is – topologically – equivalent to the unit disc . It is known that for a function represented in polar coordinates on , certain boundary conditions must be satisfied by so that the surface is of class . More precisely, we construct an approximant of class on as a tensor product of two quasi-interpolants, one based on UAT-splines and the other based on classical B-splines. Some numerical results are given to validate the work.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.