Mónica P. Arenas, Georgios Fotiadis, Gabriele Lenzini, Mohammadamin Rakeei
{"title":"远程安全对象验证:安全草图、模糊提取器和安全协议","authors":"Mónica P. Arenas, Georgios Fotiadis, Gabriele Lenzini, Mohammadamin Rakeei","doi":"10.1016/j.cose.2024.104131","DOIUrl":null,"url":null,"abstract":"<div><div>Coating objects with microscopic droplets of liquid crystals makes it possible to identify and authenticate objects as if they had biometric-like features: this is extremely valuable as an anti-counterfeiting measure. How to extract features from images has been studied elsewhere, but exchanging data about features is not enough if we wish to build secure cryptographic authentication protocols. What we need are authentication tokens (i.e., bitstrings), strategies to cope with noise, always present when processing images, and solutions to protect the original features so that it is impossible to reproduce them from the tokens. Secure sketches and fuzzy extractors are the cryptographic toolkits that offer these functionalities, but they must be instantiated to work with the peculiar specific features extracted from images of liquid crystals. We show how this can work and how we can obtain uniform, error-tolerant, and random strings, and how they are used to authenticate liquid crystal coated objects. Our protocol reminds an existing biometric-based protocol, but only apparently. Using the original protocol as-it-is would make the process vulnerable to an attack that exploits certain physical peculiarities of our liquid crystal coatings. Instead, our protocol is robust against the attack. We prove all our security claims formally, by modeling and verifying in Proverif, our protocol and its cryptographic schemes. We implement and benchmark our solution, measuring both the performance and the quality of authentication.</div></div>","PeriodicalId":51004,"journal":{"name":"Computers & Security","volume":"148 ","pages":"Article 104131"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remote secure object authentication: Secure sketches, fuzzy extractors, and security protocols\",\"authors\":\"Mónica P. Arenas, Georgios Fotiadis, Gabriele Lenzini, Mohammadamin Rakeei\",\"doi\":\"10.1016/j.cose.2024.104131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Coating objects with microscopic droplets of liquid crystals makes it possible to identify and authenticate objects as if they had biometric-like features: this is extremely valuable as an anti-counterfeiting measure. How to extract features from images has been studied elsewhere, but exchanging data about features is not enough if we wish to build secure cryptographic authentication protocols. What we need are authentication tokens (i.e., bitstrings), strategies to cope with noise, always present when processing images, and solutions to protect the original features so that it is impossible to reproduce them from the tokens. Secure sketches and fuzzy extractors are the cryptographic toolkits that offer these functionalities, but they must be instantiated to work with the peculiar specific features extracted from images of liquid crystals. We show how this can work and how we can obtain uniform, error-tolerant, and random strings, and how they are used to authenticate liquid crystal coated objects. Our protocol reminds an existing biometric-based protocol, but only apparently. Using the original protocol as-it-is would make the process vulnerable to an attack that exploits certain physical peculiarities of our liquid crystal coatings. Instead, our protocol is robust against the attack. We prove all our security claims formally, by modeling and verifying in Proverif, our protocol and its cryptographic schemes. We implement and benchmark our solution, measuring both the performance and the quality of authentication.</div></div>\",\"PeriodicalId\":51004,\"journal\":{\"name\":\"Computers & Security\",\"volume\":\"148 \",\"pages\":\"Article 104131\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016740482400436X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Security","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016740482400436X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Coating objects with microscopic droplets of liquid crystals makes it possible to identify and authenticate objects as if they had biometric-like features: this is extremely valuable as an anti-counterfeiting measure. How to extract features from images has been studied elsewhere, but exchanging data about features is not enough if we wish to build secure cryptographic authentication protocols. What we need are authentication tokens (i.e., bitstrings), strategies to cope with noise, always present when processing images, and solutions to protect the original features so that it is impossible to reproduce them from the tokens. Secure sketches and fuzzy extractors are the cryptographic toolkits that offer these functionalities, but they must be instantiated to work with the peculiar specific features extracted from images of liquid crystals. We show how this can work and how we can obtain uniform, error-tolerant, and random strings, and how they are used to authenticate liquid crystal coated objects. Our protocol reminds an existing biometric-based protocol, but only apparently. Using the original protocol as-it-is would make the process vulnerable to an attack that exploits certain physical peculiarities of our liquid crystal coatings. Instead, our protocol is robust against the attack. We prove all our security claims formally, by modeling and verifying in Proverif, our protocol and its cryptographic schemes. We implement and benchmark our solution, measuring both the performance and the quality of authentication.
期刊介绍:
Computers & Security is the most respected technical journal in the IT security field. With its high-profile editorial board and informative regular features and columns, the journal is essential reading for IT security professionals around the world.
Computers & Security provides you with a unique blend of leading edge research and sound practical management advice. It is aimed at the professional involved with computer security, audit, control and data integrity in all sectors - industry, commerce and academia. Recognized worldwide as THE primary source of reference for applied research and technical expertise it is your first step to fully secure systems.