Praveen Krishna Chitneedi, Frieder Hadlich, Gabriel C M Moreira, Jose Espinosa-Carrasco, Changxi Li, Graham Plastow, Daniel Fischer, Carole Charlier, Dominique Rocha, Amanda J Chamberlain, Christa Kuehn
{"title":"eQTL-Detect:基于 nextflow 的 eQTL 检测管道,采用模块化格式,脚本可共享和并行。","authors":"Praveen Krishna Chitneedi, Frieder Hadlich, Gabriel C M Moreira, Jose Espinosa-Carrasco, Changxi Li, Graham Plastow, Daniel Fischer, Carole Charlier, Dominique Rocha, Amanda J Chamberlain, Christa Kuehn","doi":"10.1093/nargab/lqae122","DOIUrl":null,"url":null,"abstract":"<p><p>Bioinformatic pipelines are becoming increasingly complex with the ever-accumulating amount of Next-generation sequencing (NGS) data. Their orchestration is difficult with a simple Bash script, but bioinformatics workflow managers such as Nextflow provide a framework to overcome respective problems. This study used Nextflow to develop a bioinformatic pipeline for detecting expression quantitative trait loci (eQTL) using a DSL2 Nextflow modular syntax, to enable sharing the huge demand for computing power as well as data access limitation across different partners often associated with eQTL studies. Based on the results from a test run with pilot data by measuring the required runtime and computational resources, the new pipeline should be suitable for eQTL studies in large scale analyses.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"6 3","pages":"lqae122"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420669/pdf/","citationCount":"0","resultStr":"{\"title\":\"eQTL-Detect: nextflow-based pipeline for eQTL detection in modular format with sharable and parallelizable scripts.\",\"authors\":\"Praveen Krishna Chitneedi, Frieder Hadlich, Gabriel C M Moreira, Jose Espinosa-Carrasco, Changxi Li, Graham Plastow, Daniel Fischer, Carole Charlier, Dominique Rocha, Amanda J Chamberlain, Christa Kuehn\",\"doi\":\"10.1093/nargab/lqae122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bioinformatic pipelines are becoming increasingly complex with the ever-accumulating amount of Next-generation sequencing (NGS) data. Their orchestration is difficult with a simple Bash script, but bioinformatics workflow managers such as Nextflow provide a framework to overcome respective problems. This study used Nextflow to develop a bioinformatic pipeline for detecting expression quantitative trait loci (eQTL) using a DSL2 Nextflow modular syntax, to enable sharing the huge demand for computing power as well as data access limitation across different partners often associated with eQTL studies. Based on the results from a test run with pilot data by measuring the required runtime and computational resources, the new pipeline should be suitable for eQTL studies in large scale analyses.</p>\",\"PeriodicalId\":33994,\"journal\":{\"name\":\"NAR Genomics and Bioinformatics\",\"volume\":\"6 3\",\"pages\":\"lqae122\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420669/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAR Genomics and Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/nargab/lqae122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqae122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
eQTL-Detect: nextflow-based pipeline for eQTL detection in modular format with sharable and parallelizable scripts.
Bioinformatic pipelines are becoming increasingly complex with the ever-accumulating amount of Next-generation sequencing (NGS) data. Their orchestration is difficult with a simple Bash script, but bioinformatics workflow managers such as Nextflow provide a framework to overcome respective problems. This study used Nextflow to develop a bioinformatic pipeline for detecting expression quantitative trait loci (eQTL) using a DSL2 Nextflow modular syntax, to enable sharing the huge demand for computing power as well as data access limitation across different partners often associated with eQTL studies. Based on the results from a test run with pilot data by measuring the required runtime and computational resources, the new pipeline should be suitable for eQTL studies in large scale analyses.