Shawna M Hengel, Ariel R Topletz-Erickson, Hossam Kadry, Stephen C Alley
{"title":"利用人体血浆中的原生 ADC LC-MS 数据,采用建模方法比较单个药物载荷物种的 ADC 解结合率和全身消除率。","authors":"Shawna M Hengel, Ariel R Topletz-Erickson, Hossam Kadry, Stephen C Alley","doi":"10.1080/00498254.2024.2340741","DOIUrl":null,"url":null,"abstract":"<p><p>Native liquid chromatography mass spectrometry (LC-MS) is a commonly used approach for intact analysis of inter-chain cysteine conjugated antibody-drug conjugates (ADCs). Coupling native LC-MS with affinity capture provides a platform for intact ADC analysis from <i>in vivo</i> samples and characterisation of individual drug load species, specifically the impact of drug linker deconjugation, hydrolysis, and differential clearance in a biological system.This manuscript describes data generated from native LC-MS analysis of ADCs from human plasma, both <i>in vitro</i> incubations and clinical samples. It also details the pharmacokinetic (PK) model built to specifically characterise the disposition of individual drug load species from MMAE and MMAF interchain cysteine conjugated ADCs.<i>In vitro</i> deconjugation and hydrolysis rates were similar across both ADCs. Differential clearance of higher loaded species <i>in vivo</i> was pronounced for the MMAE conjugated ADC, while systemic elimination after accounting for deconjugation was similar across drug loads for the MMAF conjugated ADC. This is the first report of affinity capture native LC-MS analysis, and subsequent modelling of deconjugation, hydrolysis and clearance rates of individual drug load species using clinical data from cysteine conjugated ADCs.</p>","PeriodicalId":23812,"journal":{"name":"Xenobiotica","volume":"54 8","pages":"492-501"},"PeriodicalIF":1.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A modelling approach to compare ADC deconjugation and systemic elimination rates of individual drug-load species using native ADC LC-MS data from human plasma.\",\"authors\":\"Shawna M Hengel, Ariel R Topletz-Erickson, Hossam Kadry, Stephen C Alley\",\"doi\":\"10.1080/00498254.2024.2340741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Native liquid chromatography mass spectrometry (LC-MS) is a commonly used approach for intact analysis of inter-chain cysteine conjugated antibody-drug conjugates (ADCs). Coupling native LC-MS with affinity capture provides a platform for intact ADC analysis from <i>in vivo</i> samples and characterisation of individual drug load species, specifically the impact of drug linker deconjugation, hydrolysis, and differential clearance in a biological system.This manuscript describes data generated from native LC-MS analysis of ADCs from human plasma, both <i>in vitro</i> incubations and clinical samples. It also details the pharmacokinetic (PK) model built to specifically characterise the disposition of individual drug load species from MMAE and MMAF interchain cysteine conjugated ADCs.<i>In vitro</i> deconjugation and hydrolysis rates were similar across both ADCs. Differential clearance of higher loaded species <i>in vivo</i> was pronounced for the MMAE conjugated ADC, while systemic elimination after accounting for deconjugation was similar across drug loads for the MMAF conjugated ADC. This is the first report of affinity capture native LC-MS analysis, and subsequent modelling of deconjugation, hydrolysis and clearance rates of individual drug load species using clinical data from cysteine conjugated ADCs.</p>\",\"PeriodicalId\":23812,\"journal\":{\"name\":\"Xenobiotica\",\"volume\":\"54 8\",\"pages\":\"492-501\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Xenobiotica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/00498254.2024.2340741\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Xenobiotica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/00498254.2024.2340741","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/27 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
A modelling approach to compare ADC deconjugation and systemic elimination rates of individual drug-load species using native ADC LC-MS data from human plasma.
Native liquid chromatography mass spectrometry (LC-MS) is a commonly used approach for intact analysis of inter-chain cysteine conjugated antibody-drug conjugates (ADCs). Coupling native LC-MS with affinity capture provides a platform for intact ADC analysis from in vivo samples and characterisation of individual drug load species, specifically the impact of drug linker deconjugation, hydrolysis, and differential clearance in a biological system.This manuscript describes data generated from native LC-MS analysis of ADCs from human plasma, both in vitro incubations and clinical samples. It also details the pharmacokinetic (PK) model built to specifically characterise the disposition of individual drug load species from MMAE and MMAF interchain cysteine conjugated ADCs.In vitro deconjugation and hydrolysis rates were similar across both ADCs. Differential clearance of higher loaded species in vivo was pronounced for the MMAE conjugated ADC, while systemic elimination after accounting for deconjugation was similar across drug loads for the MMAF conjugated ADC. This is the first report of affinity capture native LC-MS analysis, and subsequent modelling of deconjugation, hydrolysis and clearance rates of individual drug load species using clinical data from cysteine conjugated ADCs.
期刊介绍:
Xenobiotica covers seven main areas, including:General Xenobiochemistry, including in vitro studies concerned with the metabolism, disposition and excretion of drugs, and other xenobiotics, as well as the structure, function and regulation of associated enzymesClinical Pharmacokinetics and Metabolism, covering the pharmacokinetics and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in manAnimal Pharmacokinetics and Metabolism, covering the pharmacokinetics, and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in animalsPharmacogenetics, defined as the identification and functional characterisation of polymorphic genes that encode xenobiotic metabolising enzymes and transporters that may result in altered enzymatic, cellular and clinical responses to xenobioticsMolecular Toxicology, concerning the mechanisms of toxicity and the study of toxicology of xenobiotics at the molecular levelXenobiotic Transporters, concerned with all aspects of the carrier proteins involved in the movement of xenobiotics into and out of cells, and their impact on pharmacokinetic behaviour in animals and manTopics in Xenobiochemistry, in the form of reviews and commentaries are primarily intended to be a critical analysis of the issue, wherein the author offers opinions on the relevance of data or of a particular experimental approach or methodology