{"title":"对四人火车的早期神经电生理监测有助于检测假胆碱酯酶缺乏症。","authors":"Victoria Celis, Shashank Gandhi, Kathryn Overzet","doi":"10.1080/21646821.2024.2401641","DOIUrl":null,"url":null,"abstract":"<p><p>A craniotomy with cortical and subcortical mapping was planned for a 64-year-old male with a large right frontotemporal brain mass. Total intravenous anesthesia was performed, and 200 milligrams of succinylcholine was administered at induction. A train of four prior to head pinning (52 minutes after succinylcholine administration) revealed zero of four twitches in the left hand and foot. The patient did not regain spontaneous breathing despite discontinuation of infusions and the surgeon canceled the case at 108 minutes from induction. The patient was safely extubated at 270 minutes. Pseudocholinesterase deficiency was suspected, and labs revealed that the patient was outside of the normal range for pseudocholinesterase enzyme at 698 units/L with a dibucaine inhibition number of 40. The patient's procedure was rescheduled 2 days later, and neuromuscular blockade was avoided. The procedure went ahead as planned with successful mapping and monitoring. This case highlights the effect of pseudocholinesterase deficiency on neuromonitoring and the importance of running train of four early on to detect neuromuscular junction issues in high-risk procedures. In this case, the surgeon was able to avoid pinning and positioning the patient and rescheduled the procedure so that motor mapping, direct cortical motor evoked potentials, and transcranial motor evoked potentials could be successfully performed.</p>","PeriodicalId":22816,"journal":{"name":"The Neurodiagnostic Journal","volume":" ","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early Neurophysiological Monitoring of Train of Four Assists in the Detection of Pseudocholinesterase Deficiency.\",\"authors\":\"Victoria Celis, Shashank Gandhi, Kathryn Overzet\",\"doi\":\"10.1080/21646821.2024.2401641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A craniotomy with cortical and subcortical mapping was planned for a 64-year-old male with a large right frontotemporal brain mass. Total intravenous anesthesia was performed, and 200 milligrams of succinylcholine was administered at induction. A train of four prior to head pinning (52 minutes after succinylcholine administration) revealed zero of four twitches in the left hand and foot. The patient did not regain spontaneous breathing despite discontinuation of infusions and the surgeon canceled the case at 108 minutes from induction. The patient was safely extubated at 270 minutes. Pseudocholinesterase deficiency was suspected, and labs revealed that the patient was outside of the normal range for pseudocholinesterase enzyme at 698 units/L with a dibucaine inhibition number of 40. The patient's procedure was rescheduled 2 days later, and neuromuscular blockade was avoided. The procedure went ahead as planned with successful mapping and monitoring. This case highlights the effect of pseudocholinesterase deficiency on neuromonitoring and the importance of running train of four early on to detect neuromuscular junction issues in high-risk procedures. In this case, the surgeon was able to avoid pinning and positioning the patient and rescheduled the procedure so that motor mapping, direct cortical motor evoked potentials, and transcranial motor evoked potentials could be successfully performed.</p>\",\"PeriodicalId\":22816,\"journal\":{\"name\":\"The Neurodiagnostic Journal\",\"volume\":\" \",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Neurodiagnostic Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21646821.2024.2401641\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Health Professions\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Neurodiagnostic Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21646821.2024.2401641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Health Professions","Score":null,"Total":0}
Early Neurophysiological Monitoring of Train of Four Assists in the Detection of Pseudocholinesterase Deficiency.
A craniotomy with cortical and subcortical mapping was planned for a 64-year-old male with a large right frontotemporal brain mass. Total intravenous anesthesia was performed, and 200 milligrams of succinylcholine was administered at induction. A train of four prior to head pinning (52 minutes after succinylcholine administration) revealed zero of four twitches in the left hand and foot. The patient did not regain spontaneous breathing despite discontinuation of infusions and the surgeon canceled the case at 108 minutes from induction. The patient was safely extubated at 270 minutes. Pseudocholinesterase deficiency was suspected, and labs revealed that the patient was outside of the normal range for pseudocholinesterase enzyme at 698 units/L with a dibucaine inhibition number of 40. The patient's procedure was rescheduled 2 days later, and neuromuscular blockade was avoided. The procedure went ahead as planned with successful mapping and monitoring. This case highlights the effect of pseudocholinesterase deficiency on neuromonitoring and the importance of running train of four early on to detect neuromuscular junction issues in high-risk procedures. In this case, the surgeon was able to avoid pinning and positioning the patient and rescheduled the procedure so that motor mapping, direct cortical motor evoked potentials, and transcranial motor evoked potentials could be successfully performed.
期刊介绍:
The Neurodiagnostic Journal is the official journal of ASET - The Neurodiagnostic Society. It serves as an educational resource for Neurodiagnostic professionals, a vehicle for introducing new techniques and innovative technologies in the field, patient safety and advocacy, and an avenue for sharing best practices within the Neurodiagnostic Technology profession. The journal features original articles about electroencephalography (EEG), evoked potentials (EP), intraoperative neuromonitoring (IONM), nerve conduction (NC), polysomnography (PSG), autonomic testing, and long-term monitoring (LTM) in the intensive care (ICU) and epilepsy monitoring units (EMU). Subject matter also includes education, training, lab management, legislative and licensure needs, guidelines for standards of care, and the impact of our profession in healthcare and society. The journal seeks to foster ideas, commentary, and news from technologists, physicians, clinicians, managers/leaders, and professional organizations, and to introduce trends and the latest developments in the field of neurodiagnostics. Media reviews, case studies, ASET Annual Conference proceedings, review articles, and quizzes for ASET-CEUs are also published in The Neurodiagnostic Journal.