Stefan Hunsche, Alexandra Hellerbach, Markus Eichner, Christoph Panknin, Sebastian Faby, Jochen Wirths, Veerle Visser-Vandewalle, Harald Treuer, Dieter Fedders
{"title":"使用光子计数探测器计算机断层扫描自动检测脑深部刺激中的导联方向:模型研究","authors":"Stefan Hunsche, Alexandra Hellerbach, Markus Eichner, Christoph Panknin, Sebastian Faby, Jochen Wirths, Veerle Visser-Vandewalle, Harald Treuer, Dieter Fedders","doi":"10.1159/000541151","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Photon-counting detector computed tomography (PCD-CT) represents the next generation of CT technology, offering enhanced capabilities for detecting the orientation of directional leads in deep brain stimulation (DBS). This study aims to refine PCD-CT-based lead orientation determination using an automated method applicable to devices from various manufacturers, addressing current methodological limitations and improving neurosurgical precision.</p><p><strong>Methods: </strong>An automated method was developed to ascertain the orientation of directional DBS leads using PCD-CT data and grayscale model fitting for devices from Boston Scientific, Medtronic, and Abbott. A phantom study was conducted to evaluate the precision and accuracy of this method, comparing it with the stripe artifact method across different lead alignments relative to the CT gantry axis.</p><p><strong>Results: </strong>Except for the Medtronic Sensight™ lead, where detection was occasionally unfeasible if aligned normal to the z-axis of the CT gantry, a clinically very unlikely alignment, the lead orientation could be automatically determined regardless of its position. The accuracy and precision of this automated method was comparable to those of the stripe artifact method.</p><p><strong>Conclusion: </strong>PCD-CT enables the automatic determination of lead orientation from leading manufacturers with an accuracy comparable to the stripe artifact method, and it offers the added benefit of being independent of the clinically occurring orientation of the head and, consequently, the lead relative to the CT gantry axis.</p>","PeriodicalId":22078,"journal":{"name":"Stereotactic and Functional Neurosurgery","volume":" ","pages":"1-8"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Detection of Directional Lead Orientation in Deep Brain Stimulation using Photon-Counting Detector Computed Tomography: A Phantom Study.\",\"authors\":\"Stefan Hunsche, Alexandra Hellerbach, Markus Eichner, Christoph Panknin, Sebastian Faby, Jochen Wirths, Veerle Visser-Vandewalle, Harald Treuer, Dieter Fedders\",\"doi\":\"10.1159/000541151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Photon-counting detector computed tomography (PCD-CT) represents the next generation of CT technology, offering enhanced capabilities for detecting the orientation of directional leads in deep brain stimulation (DBS). This study aims to refine PCD-CT-based lead orientation determination using an automated method applicable to devices from various manufacturers, addressing current methodological limitations and improving neurosurgical precision.</p><p><strong>Methods: </strong>An automated method was developed to ascertain the orientation of directional DBS leads using PCD-CT data and grayscale model fitting for devices from Boston Scientific, Medtronic, and Abbott. A phantom study was conducted to evaluate the precision and accuracy of this method, comparing it with the stripe artifact method across different lead alignments relative to the CT gantry axis.</p><p><strong>Results: </strong>Except for the Medtronic Sensight™ lead, where detection was occasionally unfeasible if aligned normal to the z-axis of the CT gantry, a clinically very unlikely alignment, the lead orientation could be automatically determined regardless of its position. The accuracy and precision of this automated method was comparable to those of the stripe artifact method.</p><p><strong>Conclusion: </strong>PCD-CT enables the automatic determination of lead orientation from leading manufacturers with an accuracy comparable to the stripe artifact method, and it offers the added benefit of being independent of the clinically occurring orientation of the head and, consequently, the lead relative to the CT gantry axis.</p>\",\"PeriodicalId\":22078,\"journal\":{\"name\":\"Stereotactic and Functional Neurosurgery\",\"volume\":\" \",\"pages\":\"1-8\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stereotactic and Functional Neurosurgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000541151\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stereotactic and Functional Neurosurgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000541151","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Automatic Detection of Directional Lead Orientation in Deep Brain Stimulation using Photon-Counting Detector Computed Tomography: A Phantom Study.
Introduction: Photon-counting detector computed tomography (PCD-CT) represents the next generation of CT technology, offering enhanced capabilities for detecting the orientation of directional leads in deep brain stimulation (DBS). This study aims to refine PCD-CT-based lead orientation determination using an automated method applicable to devices from various manufacturers, addressing current methodological limitations and improving neurosurgical precision.
Methods: An automated method was developed to ascertain the orientation of directional DBS leads using PCD-CT data and grayscale model fitting for devices from Boston Scientific, Medtronic, and Abbott. A phantom study was conducted to evaluate the precision and accuracy of this method, comparing it with the stripe artifact method across different lead alignments relative to the CT gantry axis.
Results: Except for the Medtronic Sensight™ lead, where detection was occasionally unfeasible if aligned normal to the z-axis of the CT gantry, a clinically very unlikely alignment, the lead orientation could be automatically determined regardless of its position. The accuracy and precision of this automated method was comparable to those of the stripe artifact method.
Conclusion: PCD-CT enables the automatic determination of lead orientation from leading manufacturers with an accuracy comparable to the stripe artifact method, and it offers the added benefit of being independent of the clinically occurring orientation of the head and, consequently, the lead relative to the CT gantry axis.
期刊介绍:
''Stereotactic and Functional Neurosurgery'' provides a single source for the reader to keep abreast of developments in the most rapidly advancing subspecialty within neurosurgery. Technological advances in computer-assisted surgery, robotics, imaging and neurophysiology are being applied to clinical problems with ever-increasing rapidity in stereotaxis more than any other field, providing opportunities for new approaches to surgical and radiotherapeutic management of diseases of the brain, spinal cord, and spine. Issues feature advances in the use of deep-brain stimulation, imaging-guided techniques in stereotactic biopsy and craniotomy, stereotactic radiosurgery, and stereotactically implanted and guided radiotherapeutics and biologicals in the treatment of functional and movement disorders, brain tumors, and other diseases of the brain. Background information from basic science laboratories related to such clinical advances provides the reader with an overall perspective of this field. Proceedings and abstracts from many of the key international meetings furnish an overview of this specialty available nowhere else. ''Stereotactic and Functional Neurosurgery'' meets the information needs of both investigators and clinicians in this rapidly advancing field.