Majlen A. Dilweg, Tamara A. M. Mocking, Pantelis Maragkoudakis, Gerard J. P. van Westen, Laura H. Heitman, Adriaan P. IJzerman, Willem Jespers and Daan van der Es
{"title":"作为去甲肾上腺素再摄取抑制剂的 N,2-取代环烷基胺的立体化学优化。","authors":"Majlen A. Dilweg, Tamara A. M. Mocking, Pantelis Maragkoudakis, Gerard J. P. van Westen, Laura H. Heitman, Adriaan P. IJzerman, Willem Jespers and Daan van der Es","doi":"10.1039/D4MD00521J","DOIUrl":null,"url":null,"abstract":"<p >The norepinephrine transporter (NET), encoded by the SLC6A2 gene, is one of three key monoamine neurotransmitter transporters. Inhibition of NET-mediated reuptake of norepinephrine by monoamine reuptake inhibitors has been the main therapeutic strategy to treat disorders such as depression, ADHD and Parkinson's disease. Nevertheless, lack of efficacy as well as risk of adverse effects are still common for these treatments underscoring the necessity to improve drug discovery efforts for this target. In this study, we developed new inhibitors based on 4-((2-(3,4-dichlorophenyl)cyclopentyl)amino)butan-1-ol (<strong>8</strong>), a potent NET inhibitor, which emerged from earlier virtual screening efforts using a predictive proteochemometric model. Hence, we optimized the <em>N</em>,2-substituted cycloalkylamine scaffold in three regions to design twenty new derivatives. To establish structure–activity relationships for these NET inhibitors, all novel compounds were tested utilizing an impedance-based ‘transporter activity through receptor activation’ assay. Moreover, all stereoisomers of the most potent compound (<strong>27</strong>) were synthesized and evaluated for their inhibitory potencies. Initial screening indicated that modifications in the cyclopentylamine moiety and phenyl substitutions decreased NET inhibition compared to <strong>8</strong>, emphasizing the importance of the five-membered ring, secondary amine and dichloro-substitution pattern in NET binding. Substituting the original butylalcohol at the <em>R</em><small><sup>2</sup></small> position with a rigid cyclohexanol yielded lead compound <strong>27</strong>, with potency similar to reference inhibitor nisoxetine. Pharmacological characterization of all eight stereoisomers of <strong>27</strong> revealed varying inhibitory potencies, favoring a <em>trans</em>-orientation of the <em>N</em>,2-substituted cyclopentyl moiety. Molecular docking highlighted key interactions and the impact of a hydrophilic region in the binding pocket. This study presents a novel set of moderate to highly potent NET inhibitors, elucidating the influence of molecular orientation in the NET binding pocket and offering valuable insights into drug discovery efforts for monoamine transport-related treatments.</p>","PeriodicalId":21462,"journal":{"name":"RSC medicinal chemistry","volume":" 12","pages":" 4068-4079"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stereochemical optimization of N,2-substituted cycloalkylamines as norepinephrine reuptake inhibitors†\",\"authors\":\"Majlen A. Dilweg, Tamara A. M. Mocking, Pantelis Maragkoudakis, Gerard J. P. van Westen, Laura H. Heitman, Adriaan P. IJzerman, Willem Jespers and Daan van der Es\",\"doi\":\"10.1039/D4MD00521J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The norepinephrine transporter (NET), encoded by the SLC6A2 gene, is one of three key monoamine neurotransmitter transporters. Inhibition of NET-mediated reuptake of norepinephrine by monoamine reuptake inhibitors has been the main therapeutic strategy to treat disorders such as depression, ADHD and Parkinson's disease. Nevertheless, lack of efficacy as well as risk of adverse effects are still common for these treatments underscoring the necessity to improve drug discovery efforts for this target. In this study, we developed new inhibitors based on 4-((2-(3,4-dichlorophenyl)cyclopentyl)amino)butan-1-ol (<strong>8</strong>), a potent NET inhibitor, which emerged from earlier virtual screening efforts using a predictive proteochemometric model. Hence, we optimized the <em>N</em>,2-substituted cycloalkylamine scaffold in three regions to design twenty new derivatives. To establish structure–activity relationships for these NET inhibitors, all novel compounds were tested utilizing an impedance-based ‘transporter activity through receptor activation’ assay. Moreover, all stereoisomers of the most potent compound (<strong>27</strong>) were synthesized and evaluated for their inhibitory potencies. Initial screening indicated that modifications in the cyclopentylamine moiety and phenyl substitutions decreased NET inhibition compared to <strong>8</strong>, emphasizing the importance of the five-membered ring, secondary amine and dichloro-substitution pattern in NET binding. Substituting the original butylalcohol at the <em>R</em><small><sup>2</sup></small> position with a rigid cyclohexanol yielded lead compound <strong>27</strong>, with potency similar to reference inhibitor nisoxetine. Pharmacological characterization of all eight stereoisomers of <strong>27</strong> revealed varying inhibitory potencies, favoring a <em>trans</em>-orientation of the <em>N</em>,2-substituted cyclopentyl moiety. Molecular docking highlighted key interactions and the impact of a hydrophilic region in the binding pocket. This study presents a novel set of moderate to highly potent NET inhibitors, elucidating the influence of molecular orientation in the NET binding pocket and offering valuable insights into drug discovery efforts for monoamine transport-related treatments.</p>\",\"PeriodicalId\":21462,\"journal\":{\"name\":\"RSC medicinal chemistry\",\"volume\":\" 12\",\"pages\":\" 4068-4079\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/md/d4md00521j\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/md/d4md00521j","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
由 SLC6A2 基因编码的去甲肾上腺素转运体(NET)是三大单胺神经递质转运体之一。通过单胺再摄取抑制剂抑制 NET 介导的去甲肾上腺素再摄取一直是治疗抑郁症、多动症和帕金森病等疾病的主要治疗策略。然而,这些治疗方法仍然普遍存在疗效不佳和不良反应风险的问题,这凸显了针对这一靶点改进药物研发工作的必要性。在本研究中,我们开发了基于 4-((2-(3,4-二氯苯基)环戊基)氨基)丁-1-醇 (8) 的新抑制剂,它是一种强效的 NET 抑制剂,是早期使用预测性蛋白化学计量学模型进行虚拟筛选的结果。因此,我们对 N,2-取代环烷基胺支架的三个区域进行了优化,设计出 20 种新的衍生物。为了建立这些 NET 抑制剂的结构-活性关系,我们利用基于阻抗的 "通过受体激活转运体活性 "测定法对所有新型化合物进行了测试。此外,还合成了最强化合物(27)的所有立体异构体,并对其抑制效力进行了评估。初步筛选结果表明,与 8 相比,环戊胺分子的修饰和苯基取代降低了对 NET 的抑制作用,这强调了五元环、仲胺和二氯取代模式在 NET 结合中的重要性。用刚性环己醇取代 R 2 位上的原始丁基醇,得到了先导化合物 27,其药效与参考抑制剂尼索西汀相似。27 的所有八种立体异构体的药理特征均显示出不同的抑制效力,N,2-取代环戊基的反式取向更受青睐。分子对接突显了关键的相互作用以及结合袋中亲水区域的影响。这项研究提出了一组新的中度到高度有效的 NET 抑制剂,阐明了 NET 结合袋中分子取向的影响,为单胺转运相关治疗药物的发现工作提供了宝贵的见解。
Stereochemical optimization of N,2-substituted cycloalkylamines as norepinephrine reuptake inhibitors†
The norepinephrine transporter (NET), encoded by the SLC6A2 gene, is one of three key monoamine neurotransmitter transporters. Inhibition of NET-mediated reuptake of norepinephrine by monoamine reuptake inhibitors has been the main therapeutic strategy to treat disorders such as depression, ADHD and Parkinson's disease. Nevertheless, lack of efficacy as well as risk of adverse effects are still common for these treatments underscoring the necessity to improve drug discovery efforts for this target. In this study, we developed new inhibitors based on 4-((2-(3,4-dichlorophenyl)cyclopentyl)amino)butan-1-ol (8), a potent NET inhibitor, which emerged from earlier virtual screening efforts using a predictive proteochemometric model. Hence, we optimized the N,2-substituted cycloalkylamine scaffold in three regions to design twenty new derivatives. To establish structure–activity relationships for these NET inhibitors, all novel compounds were tested utilizing an impedance-based ‘transporter activity through receptor activation’ assay. Moreover, all stereoisomers of the most potent compound (27) were synthesized and evaluated for their inhibitory potencies. Initial screening indicated that modifications in the cyclopentylamine moiety and phenyl substitutions decreased NET inhibition compared to 8, emphasizing the importance of the five-membered ring, secondary amine and dichloro-substitution pattern in NET binding. Substituting the original butylalcohol at the R2 position with a rigid cyclohexanol yielded lead compound 27, with potency similar to reference inhibitor nisoxetine. Pharmacological characterization of all eight stereoisomers of 27 revealed varying inhibitory potencies, favoring a trans-orientation of the N,2-substituted cyclopentyl moiety. Molecular docking highlighted key interactions and the impact of a hydrophilic region in the binding pocket. This study presents a novel set of moderate to highly potent NET inhibitors, elucidating the influence of molecular orientation in the NET binding pocket and offering valuable insights into drug discovery efforts for monoamine transport-related treatments.