酵母菌和念珠菌中 Dxo1 的独立新功能化导致了 25S rRNA 处理功能。

IF 4.2 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
RNA Pub Date : 2024-11-18 DOI:10.1261/rna.080210.124
Jennifer E Hurtig, Catherine J Stuart, Ambro van Hoof
{"title":"酵母菌和念珠菌中 Dxo1 的独立新功能化导致了 25S rRNA 处理功能。","authors":"Jennifer E Hurtig, Catherine J Stuart, Ambro van Hoof","doi":"10.1261/rna.080210.124","DOIUrl":null,"url":null,"abstract":"<p><p>Eukaryotic genomes typically encode one member of the DXO/Dxo1/Rai1 family of enzymes, which can hydrolyze the 5' ends of RNAs with a variety of structures that deviate from the canonical <sup>7m</sup>GpppN. In contrast, the <i>Saccharomyces</i> genome encodes two family members and the second copy, Dxo1, is a distributive 5' exoribonuclease that is required for the final maturation of the 5' end of 25S rRNA from a 25S' precursor. Here we show that this 25S rRNA maturation function is not conserved across kingdoms, but arose in the budding yeasts. Interestingly, the origin of 25S processing capacity coincides with the duplication of this gene, and this capacity is absent in the nonduplicated genes. Strikingly, two different clades of budding yeasts have undergone parallel evolution: Both duplicated their DXO/Dxo1/Rai1 gene, and in both cases, one copy gained the 25S processing function. This was accompanied by many parallel sequence changes, a remarkable case of reproducible neofunctionalization.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":"1634-1645"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11571810/pdf/","citationCount":"0","resultStr":"{\"title\":\"Independent neofunctionalization of Dxo1 in <i>Saccharomyces</i> and <i>Candida</i> led to 25S rRNA processing function.\",\"authors\":\"Jennifer E Hurtig, Catherine J Stuart, Ambro van Hoof\",\"doi\":\"10.1261/rna.080210.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Eukaryotic genomes typically encode one member of the DXO/Dxo1/Rai1 family of enzymes, which can hydrolyze the 5' ends of RNAs with a variety of structures that deviate from the canonical <sup>7m</sup>GpppN. In contrast, the <i>Saccharomyces</i> genome encodes two family members and the second copy, Dxo1, is a distributive 5' exoribonuclease that is required for the final maturation of the 5' end of 25S rRNA from a 25S' precursor. Here we show that this 25S rRNA maturation function is not conserved across kingdoms, but arose in the budding yeasts. Interestingly, the origin of 25S processing capacity coincides with the duplication of this gene, and this capacity is absent in the nonduplicated genes. Strikingly, two different clades of budding yeasts have undergone parallel evolution: Both duplicated their DXO/Dxo1/Rai1 gene, and in both cases, one copy gained the 25S processing function. This was accompanied by many parallel sequence changes, a remarkable case of reproducible neofunctionalization.</p>\",\"PeriodicalId\":21401,\"journal\":{\"name\":\"RNA\",\"volume\":\" \",\"pages\":\"1634-1645\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11571810/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RNA\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1261/rna.080210.124\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1261/rna.080210.124","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

真核生物基因组通常编码 DXO/Dxo1/Rai1 家族酶的一个成员,它们可以水解 RNA 的 5'末端,这些 RNA 有多种结构,与标准的 7mGpppN 结构不同。相比之下,酵母菌基因组编码了两个家族成员,第二个拷贝 Dxo1 是一种分布式 5' 外切核酸酶,它是 25S rRNA 5' 端从 25S' 前体最终成熟所必需的。在这里,我们发现这种 25S rRNA 的成熟功能在不同生物界中并不一致,而是出现在萌芽酵母中。有趣的是,25S 处理能力的起源与该基因的复制相吻合,而非复制基因则不具备这种能力。引人注目的是,芽殖酵母的两个不同支系经历了平行进化:这两个支系都复制了 DXO/Dxo1/Rai1 基因,其中一个拷贝获得了 25S 处理功能。这伴随着许多平行的序列变化,是可重复的新功能化的一个显著案例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Independent neofunctionalization of Dxo1 in Saccharomyces and Candida led to 25S rRNA processing function.

Eukaryotic genomes typically encode one member of the DXO/Dxo1/Rai1 family of enzymes, which can hydrolyze the 5' ends of RNAs with a variety of structures that deviate from the canonical 7mGpppN. In contrast, the Saccharomyces genome encodes two family members and the second copy, Dxo1, is a distributive 5' exoribonuclease that is required for the final maturation of the 5' end of 25S rRNA from a 25S' precursor. Here we show that this 25S rRNA maturation function is not conserved across kingdoms, but arose in the budding yeasts. Interestingly, the origin of 25S processing capacity coincides with the duplication of this gene, and this capacity is absent in the nonduplicated genes. Strikingly, two different clades of budding yeasts have undergone parallel evolution: Both duplicated their DXO/Dxo1/Rai1 gene, and in both cases, one copy gained the 25S processing function. This was accompanied by many parallel sequence changes, a remarkable case of reproducible neofunctionalization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RNA
RNA 生物-生化与分子生物学
CiteScore
8.30
自引率
2.20%
发文量
101
审稿时长
2.6 months
期刊介绍: RNA is a monthly journal which provides rapid publication of significant original research in all areas of RNA structure and function in eukaryotic, prokaryotic, and viral systems. It covers a broad range of subjects in RNA research, including: structural analysis by biochemical or biophysical means; mRNA structure, function and biogenesis; alternative processing: cis-acting elements and trans-acting factors; ribosome structure and function; translational control; RNA catalysis; tRNA structure, function, biogenesis and identity; RNA editing; rRNA structure, function and biogenesis; RNA transport and localization; regulatory RNAs; large and small RNP structure, function and biogenesis; viral RNA metabolism; RNA stability and turnover; in vitro evolution; and RNA chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信