{"title":"周围神经系统的显微解剖:了解极早期典型吉兰-巴雷综合征病理生理学的基本概念。","authors":"José Berciano","doi":"10.1111/neup.13006","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this paper is to analyze the pathophysiological mechanisms acting in very early classic Guillain-Barré syndrome (GBS) (≤4 days of symptomatic onset). In this inaugural period, both in GBS and its animal model, experimental autoimmune neuritis, the outstanding pathological feature is inflammatory edema predominating in proximal nerve trunks, particularly spinal nerves, and possibly in preterminal nerve segments. Nerve trunks external to the subarachnoid angle possess epi- perineurium that is relatively inelastic and of low compliance. Here such edema can increase endoneurial fluid pressure that, when sufficiently critical, may stretch the perineurium and constrict transperineurial microcirculation, compromising blood flow and producing the potential for ischemic nerve injury, whose consequence is rapid partial or complete loss of nerve excitability. These histopathological features correlate well with electrophysiological and imaging findings reported in early GBS stages. Spinal nerve edema and ischemia help to understand the pattern of Wallerian-like degeneration observed in the axonal form of GBS, predominating in motor spinal roots at their exit from the dura matter (spinal nerves) with centrifugal distribution in more distant motor nerve trunks, and centripetal extension to the distal portion of intrathecal roots. The similarity of initial pathogenic mechanisms between demyelinating and axonal forms of GBS explains why an early increase of serum biomarkers of axonal damage is detected in both forms. In conclusion, knowledge of the microscopic anatomy of the peripheral nervous system is an essential step for a reliable understanding of pathophysiological mechanisms operating in the early phase of any classic GBS subtype.</p>","PeriodicalId":19204,"journal":{"name":"Neuropathology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microscopical anatomy of the peripheral nervous system: An essential notion for understanding the pathophysiology of very early classic Guillain-Barré syndrome.\",\"authors\":\"José Berciano\",\"doi\":\"10.1111/neup.13006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of this paper is to analyze the pathophysiological mechanisms acting in very early classic Guillain-Barré syndrome (GBS) (≤4 days of symptomatic onset). In this inaugural period, both in GBS and its animal model, experimental autoimmune neuritis, the outstanding pathological feature is inflammatory edema predominating in proximal nerve trunks, particularly spinal nerves, and possibly in preterminal nerve segments. Nerve trunks external to the subarachnoid angle possess epi- perineurium that is relatively inelastic and of low compliance. Here such edema can increase endoneurial fluid pressure that, when sufficiently critical, may stretch the perineurium and constrict transperineurial microcirculation, compromising blood flow and producing the potential for ischemic nerve injury, whose consequence is rapid partial or complete loss of nerve excitability. These histopathological features correlate well with electrophysiological and imaging findings reported in early GBS stages. Spinal nerve edema and ischemia help to understand the pattern of Wallerian-like degeneration observed in the axonal form of GBS, predominating in motor spinal roots at their exit from the dura matter (spinal nerves) with centrifugal distribution in more distant motor nerve trunks, and centripetal extension to the distal portion of intrathecal roots. The similarity of initial pathogenic mechanisms between demyelinating and axonal forms of GBS explains why an early increase of serum biomarkers of axonal damage is detected in both forms. In conclusion, knowledge of the microscopic anatomy of the peripheral nervous system is an essential step for a reliable understanding of pathophysiological mechanisms operating in the early phase of any classic GBS subtype.</p>\",\"PeriodicalId\":19204,\"journal\":{\"name\":\"Neuropathology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/neup.13006\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/neup.13006","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Microscopical anatomy of the peripheral nervous system: An essential notion for understanding the pathophysiology of very early classic Guillain-Barré syndrome.
The aim of this paper is to analyze the pathophysiological mechanisms acting in very early classic Guillain-Barré syndrome (GBS) (≤4 days of symptomatic onset). In this inaugural period, both in GBS and its animal model, experimental autoimmune neuritis, the outstanding pathological feature is inflammatory edema predominating in proximal nerve trunks, particularly spinal nerves, and possibly in preterminal nerve segments. Nerve trunks external to the subarachnoid angle possess epi- perineurium that is relatively inelastic and of low compliance. Here such edema can increase endoneurial fluid pressure that, when sufficiently critical, may stretch the perineurium and constrict transperineurial microcirculation, compromising blood flow and producing the potential for ischemic nerve injury, whose consequence is rapid partial or complete loss of nerve excitability. These histopathological features correlate well with electrophysiological and imaging findings reported in early GBS stages. Spinal nerve edema and ischemia help to understand the pattern of Wallerian-like degeneration observed in the axonal form of GBS, predominating in motor spinal roots at their exit from the dura matter (spinal nerves) with centrifugal distribution in more distant motor nerve trunks, and centripetal extension to the distal portion of intrathecal roots. The similarity of initial pathogenic mechanisms between demyelinating and axonal forms of GBS explains why an early increase of serum biomarkers of axonal damage is detected in both forms. In conclusion, knowledge of the microscopic anatomy of the peripheral nervous system is an essential step for a reliable understanding of pathophysiological mechanisms operating in the early phase of any classic GBS subtype.
期刊介绍:
Neuropathology is an international journal sponsored by the Japanese Society of Neuropathology and publishes peer-reviewed original papers dealing with all aspects of human and experimental neuropathology and related fields of research. The Journal aims to promote the international exchange of results and encourages authors from all countries to submit papers in the following categories: Original Articles, Case Reports, Short Communications, Occasional Reviews, Editorials and Letters to the Editor. All articles are peer-reviewed by at least two researchers expert in the field of the submitted paper.