Yongchen Cui , Qinjun Chu , Xiaogao Jin , Yong Li , Kaiyuan Guo , Guangming Zhang , Zhe Zhao , Junfeng Zhang
{"title":"罗哌卡因抑制 KIF5b 介导的 Nav1.8 转运有助于大鼠坐骨神经损伤后的轴突再生。","authors":"Yongchen Cui , Qinjun Chu , Xiaogao Jin , Yong Li , Kaiyuan Guo , Guangming Zhang , Zhe Zhao , Junfeng Zhang","doi":"10.1016/j.neuropharm.2024.110169","DOIUrl":null,"url":null,"abstract":"<div><div>Peripheral nerve injury (PNI), typically caused by traumatic accidents or medical events, is currently one of the most common diseases that leads to limb disability. After PNI, tetrodotoxin-resistant voltage-gated sodium channel Nav1.8 is upregulated at the lesion site. Our earlier study suggested that ropivacaine promotes axon regrowth by regulating Nav1.8-mediated macrophage signaling. Nevertheless, the mechanism of ropivacaine in regulation of Nav1.8 expression remains incompletely understood. Kinesin family 5b (KIF5b) was reported to mediate the Nav1.8 axonal transport from dorsal root ganglia (DRGs) to lesion site. Herein, we investigated whether ropivacaine promotes axon regeneration through inhibition of KIF5b-mediated Nav1.8 transport. Reduced levels of KIF5b and Nav1.8 in DRGs coincide with their increase at the lesion site. Nav1.8 mRNA was significantly increased at the lesion site but not in DRGs. Surprisingly, ropivacaine reversed the alterations of Nav1.8 and KIF5b protein expression without affecting Nav1.8 mRNA level. Due to KIF5b overexpression in DRGs, Nav1.8 protein level was significantly decreased in DRGs and increased at the lesion site. We also found KIF5b overexpression significantly impaired behavioral functions, reduced the recovery index of compound muscle action potential (CMAP) amplitude, inhibited axonal regrowth, slowed M1 macrophage infiltration and shift to M2 phenotype, and delayed myelin debris clearance. Notably, all aforementioned results caused by KIF5b overexpression were alleviated by ropivacaine. Furthermore, we demonstrated that inhibition of Nav1.8 transport by A-803467 produced mitigating effects on the impairment of regenerative capacity induced by KIF5b overexpression similar to ropivacaine. These results suggest that ropivacaine promotes axonal regeneration at least partially by inhibiting KIF5b-mediated Nav1.8 forward transport.</div></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"261 ","pages":"Article 110169"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibition of KIF5b-mediated Nav1.8 transport by ropivacaine contributes to axonal regeneration following sciatic nerve injury in rats\",\"authors\":\"Yongchen Cui , Qinjun Chu , Xiaogao Jin , Yong Li , Kaiyuan Guo , Guangming Zhang , Zhe Zhao , Junfeng Zhang\",\"doi\":\"10.1016/j.neuropharm.2024.110169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Peripheral nerve injury (PNI), typically caused by traumatic accidents or medical events, is currently one of the most common diseases that leads to limb disability. After PNI, tetrodotoxin-resistant voltage-gated sodium channel Nav1.8 is upregulated at the lesion site. Our earlier study suggested that ropivacaine promotes axon regrowth by regulating Nav1.8-mediated macrophage signaling. Nevertheless, the mechanism of ropivacaine in regulation of Nav1.8 expression remains incompletely understood. Kinesin family 5b (KIF5b) was reported to mediate the Nav1.8 axonal transport from dorsal root ganglia (DRGs) to lesion site. Herein, we investigated whether ropivacaine promotes axon regeneration through inhibition of KIF5b-mediated Nav1.8 transport. Reduced levels of KIF5b and Nav1.8 in DRGs coincide with their increase at the lesion site. Nav1.8 mRNA was significantly increased at the lesion site but not in DRGs. Surprisingly, ropivacaine reversed the alterations of Nav1.8 and KIF5b protein expression without affecting Nav1.8 mRNA level. Due to KIF5b overexpression in DRGs, Nav1.8 protein level was significantly decreased in DRGs and increased at the lesion site. We also found KIF5b overexpression significantly impaired behavioral functions, reduced the recovery index of compound muscle action potential (CMAP) amplitude, inhibited axonal regrowth, slowed M1 macrophage infiltration and shift to M2 phenotype, and delayed myelin debris clearance. Notably, all aforementioned results caused by KIF5b overexpression were alleviated by ropivacaine. Furthermore, we demonstrated that inhibition of Nav1.8 transport by A-803467 produced mitigating effects on the impairment of regenerative capacity induced by KIF5b overexpression similar to ropivacaine. These results suggest that ropivacaine promotes axonal regeneration at least partially by inhibiting KIF5b-mediated Nav1.8 forward transport.</div></div>\",\"PeriodicalId\":19139,\"journal\":{\"name\":\"Neuropharmacology\",\"volume\":\"261 \",\"pages\":\"Article 110169\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0028390824003381\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0028390824003381","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Inhibition of KIF5b-mediated Nav1.8 transport by ropivacaine contributes to axonal regeneration following sciatic nerve injury in rats
Peripheral nerve injury (PNI), typically caused by traumatic accidents or medical events, is currently one of the most common diseases that leads to limb disability. After PNI, tetrodotoxin-resistant voltage-gated sodium channel Nav1.8 is upregulated at the lesion site. Our earlier study suggested that ropivacaine promotes axon regrowth by regulating Nav1.8-mediated macrophage signaling. Nevertheless, the mechanism of ropivacaine in regulation of Nav1.8 expression remains incompletely understood. Kinesin family 5b (KIF5b) was reported to mediate the Nav1.8 axonal transport from dorsal root ganglia (DRGs) to lesion site. Herein, we investigated whether ropivacaine promotes axon regeneration through inhibition of KIF5b-mediated Nav1.8 transport. Reduced levels of KIF5b and Nav1.8 in DRGs coincide with their increase at the lesion site. Nav1.8 mRNA was significantly increased at the lesion site but not in DRGs. Surprisingly, ropivacaine reversed the alterations of Nav1.8 and KIF5b protein expression without affecting Nav1.8 mRNA level. Due to KIF5b overexpression in DRGs, Nav1.8 protein level was significantly decreased in DRGs and increased at the lesion site. We also found KIF5b overexpression significantly impaired behavioral functions, reduced the recovery index of compound muscle action potential (CMAP) amplitude, inhibited axonal regrowth, slowed M1 macrophage infiltration and shift to M2 phenotype, and delayed myelin debris clearance. Notably, all aforementioned results caused by KIF5b overexpression were alleviated by ropivacaine. Furthermore, we demonstrated that inhibition of Nav1.8 transport by A-803467 produced mitigating effects on the impairment of regenerative capacity induced by KIF5b overexpression similar to ropivacaine. These results suggest that ropivacaine promotes axonal regeneration at least partially by inhibiting KIF5b-mediated Nav1.8 forward transport.
期刊介绍:
Neuropharmacology publishes high quality, original research and review articles within the discipline of neuroscience, especially articles with a neuropharmacological component. However, papers within any area of neuroscience will be considered. The journal does not usually accept clinical research, although preclinical neuropharmacological studies in humans may be considered. The journal only considers submissions in which the chemical structures and compositions of experimental agents are readily available in the literature or disclosed by the authors in the submitted manuscript. Only in exceptional circumstances will natural products be considered, and then only if the preparation is well defined by scientific means. Neuropharmacology publishes articles of any length (original research and reviews).