Shu-Jin Wu, Xin-Yi Lan, Yue Shi, Yan-Ni Liu, Xiao-Xi Zhang, Qi Zhang, Yu-Bo Gao, Juan Li, Xian Yang, Hu-Hu Bai
{"title":"脊髓PTP1B调控NMDA受体介导的痛觉传导和外周炎症诱导的痛觉敏感化","authors":"Shu-Jin Wu, Xin-Yi Lan, Yue Shi, Yan-Ni Liu, Xiao-Xi Zhang, Qi Zhang, Yu-Bo Gao, Juan Li, Xian Yang, Hu-Hu Bai","doi":"10.1007/s12035-024-04519-4","DOIUrl":null,"url":null,"abstract":"<p><p>Protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of several pain-related substrates in spinal cord dorsal horn and are critically involved in the modification of pain transmission. The current study demonstrated that protein tyrosine phosphatase 1B (PTP1B), a unique endoplasmic reticulum-resident member of PTP family, displayed an activity-dependent increase in its protein expression and synaptic localization in spinal dorsal horn of adult male rats. PTP1B interacted with the Src Homology 3 (SH3) domain of Synapse-Associated Protein 102 (SAP102), one of the postsynaptic scaffolding proteins that anchored PTP1B at postsynaptic sites. The SAP102-tethered PTP1B augmented the synaptic transmission mediated specifically by GluN2B subunit-containing N-methyl-D-aspartate subtype glutamate receptors. Interference with PTP1B activity or disruption of its interaction with SAP102 attenuated GluN2B-mediated nociceptive transmission and ameliorated pain sensitization induced by intraplantar injection of Complete Freund's Adjuvant. These data suggested that the activity-dependent synaptic redistribution of PTP1B served as an important mechanism regulating GluN2B receptor activity and that manipulation of PTP1B synaptic targeting might represent an effective approach for the treatment of chronic inflammatory pain.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"3781-3793"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spinal PTP1B Regulated NMDA Receptor-mediated Nociceptive Transmission and Peripheral Inflammation-induced Pain Sensitization.\",\"authors\":\"Shu-Jin Wu, Xin-Yi Lan, Yue Shi, Yan-Ni Liu, Xiao-Xi Zhang, Qi Zhang, Yu-Bo Gao, Juan Li, Xian Yang, Hu-Hu Bai\",\"doi\":\"10.1007/s12035-024-04519-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of several pain-related substrates in spinal cord dorsal horn and are critically involved in the modification of pain transmission. The current study demonstrated that protein tyrosine phosphatase 1B (PTP1B), a unique endoplasmic reticulum-resident member of PTP family, displayed an activity-dependent increase in its protein expression and synaptic localization in spinal dorsal horn of adult male rats. PTP1B interacted with the Src Homology 3 (SH3) domain of Synapse-Associated Protein 102 (SAP102), one of the postsynaptic scaffolding proteins that anchored PTP1B at postsynaptic sites. The SAP102-tethered PTP1B augmented the synaptic transmission mediated specifically by GluN2B subunit-containing N-methyl-D-aspartate subtype glutamate receptors. Interference with PTP1B activity or disruption of its interaction with SAP102 attenuated GluN2B-mediated nociceptive transmission and ameliorated pain sensitization induced by intraplantar injection of Complete Freund's Adjuvant. These data suggested that the activity-dependent synaptic redistribution of PTP1B served as an important mechanism regulating GluN2B receptor activity and that manipulation of PTP1B synaptic targeting might represent an effective approach for the treatment of chronic inflammatory pain.</p>\",\"PeriodicalId\":18762,\"journal\":{\"name\":\"Molecular Neurobiology\",\"volume\":\" \",\"pages\":\"3781-3793\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12035-024-04519-4\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-024-04519-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of several pain-related substrates in spinal cord dorsal horn and are critically involved in the modification of pain transmission. The current study demonstrated that protein tyrosine phosphatase 1B (PTP1B), a unique endoplasmic reticulum-resident member of PTP family, displayed an activity-dependent increase in its protein expression and synaptic localization in spinal dorsal horn of adult male rats. PTP1B interacted with the Src Homology 3 (SH3) domain of Synapse-Associated Protein 102 (SAP102), one of the postsynaptic scaffolding proteins that anchored PTP1B at postsynaptic sites. The SAP102-tethered PTP1B augmented the synaptic transmission mediated specifically by GluN2B subunit-containing N-methyl-D-aspartate subtype glutamate receptors. Interference with PTP1B activity or disruption of its interaction with SAP102 attenuated GluN2B-mediated nociceptive transmission and ameliorated pain sensitization induced by intraplantar injection of Complete Freund's Adjuvant. These data suggested that the activity-dependent synaptic redistribution of PTP1B served as an important mechanism regulating GluN2B receptor activity and that manipulation of PTP1B synaptic targeting might represent an effective approach for the treatment of chronic inflammatory pain.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.