神经元膜糖蛋白 GPM6a 和细胞间粘附分子 ICAM5 对神经元形态发生的叠加效应

IF 4.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
R Gutiérrez Fuster, A León, G I Aparicio, F Brizuela Sotelo, C Scorticati
{"title":"神经元膜糖蛋白 GPM6a 和细胞间粘附分子 ICAM5 对神经元形态发生的叠加效应","authors":"R Gutiérrez Fuster, A León, G I Aparicio, F Brizuela Sotelo, C Scorticati","doi":"10.1111/jnc.16231","DOIUrl":null,"url":null,"abstract":"<p><p>The mechanisms underlying neuronal development and synaptic formation in the brain depend on intricate cellular and molecular processes. The neuronal membrane glycoprotein GPM6a promotes neurite elongation, filopodia/spine formation, and synapse development, yet its molecular mechanisms remain unknown. Since the extracellular domains of GPM6a (ECs) command its function, we investigated the interaction between ICAM5, the neuronal member of the intercellular adhesion molecule (ICAM) family, and GPM6a's ECs. Our study aimed to explore the functional relationship between GPM6a and ICAM5 in hippocampal culture neurons and cell lines. Immunostaining of 15 days in vitro (DIV) neurons revealed significant co-localization between endogenous GPM6a clusters and ICAM5 clusters in the dendritic shaft. These results were further corroborated by overexpressing GPM6a and ICAM5 in N2a cells and hippocampal neurons at 5 DIV. Moreover, results from the co-immunoprecipitations and cell aggregation assays prove the cis and trans interaction between both proteins in GPM6a/ICAM5 overexpressing HEK293 cells. Additionally, GPM6a and ICAM5 overexpression additively enhanced neurite length, the number of neurites in N2a cells, and filopodia formation in 5 DIV neurons, indicating their cooperative role. These findings highlight the dynamic association between GPM6a and ICAM5 during neuronal development, offering insights into their contributions to neurite outgrowth, filopodia formation, and cell-cell interactions.</p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined additive effects of neuronal membrane glycoprotein GPM6a and the intercellular cell adhesion molecule ICAM5 on neuronal morphogenesis.\",\"authors\":\"R Gutiérrez Fuster, A León, G I Aparicio, F Brizuela Sotelo, C Scorticati\",\"doi\":\"10.1111/jnc.16231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The mechanisms underlying neuronal development and synaptic formation in the brain depend on intricate cellular and molecular processes. The neuronal membrane glycoprotein GPM6a promotes neurite elongation, filopodia/spine formation, and synapse development, yet its molecular mechanisms remain unknown. Since the extracellular domains of GPM6a (ECs) command its function, we investigated the interaction between ICAM5, the neuronal member of the intercellular adhesion molecule (ICAM) family, and GPM6a's ECs. Our study aimed to explore the functional relationship between GPM6a and ICAM5 in hippocampal culture neurons and cell lines. Immunostaining of 15 days in vitro (DIV) neurons revealed significant co-localization between endogenous GPM6a clusters and ICAM5 clusters in the dendritic shaft. These results were further corroborated by overexpressing GPM6a and ICAM5 in N2a cells and hippocampal neurons at 5 DIV. Moreover, results from the co-immunoprecipitations and cell aggregation assays prove the cis and trans interaction between both proteins in GPM6a/ICAM5 overexpressing HEK293 cells. Additionally, GPM6a and ICAM5 overexpression additively enhanced neurite length, the number of neurites in N2a cells, and filopodia formation in 5 DIV neurons, indicating their cooperative role. These findings highlight the dynamic association between GPM6a and ICAM5 during neuronal development, offering insights into their contributions to neurite outgrowth, filopodia formation, and cell-cell interactions.</p>\",\"PeriodicalId\":16527,\"journal\":{\"name\":\"Journal of Neurochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neurochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/jnc.16231\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jnc.16231","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

大脑神经元发育和突触形成的机制取决于错综复杂的细胞和分子过程。神经元膜糖蛋白 GPM6a 可促进神经元的伸长、丝状体/棘的形成和突触的发育,但其分子机制仍不清楚。由于 GPM6a 的细胞外结构域(ECs)指挥其功能,我们研究了细胞间粘附分子(ICAM)家族的神经元成员 ICAM5 与 GPM6a 的 ECs 之间的相互作用。我们的研究旨在探索 GPM6a 和 ICAM5 在海马培养神经元和细胞系中的功能关系。对体外培养 15 天(DIV)的神经元进行的免疫染色显示,树突轴上的内源性 GPM6a 簇和 ICAM5 簇之间存在显著的共定位。在 5 DIV 的 N2a 细胞和海马神经元中过表达 GPM6a 和 ICAM5 进一步证实了这些结果。此外,在过表达 GPM6a/ICAM5 的 HEK293 细胞中,共免疫沉淀和细胞聚集试验的结果证明了这两种蛋白之间的顺式和反式相互作用。此外,GPM6a 和 ICAM5 的过表达会增加神经元的长度、N2a 细胞中神经元的数量以及 5 DIV 神经元中丝状体的形成,这表明它们之间存在合作作用。这些发现突显了GPM6a和ICAM5在神经元发育过程中的动态关联,为它们在神经元突起生长、丝状体形成和细胞-细胞相互作用中的贡献提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combined additive effects of neuronal membrane glycoprotein GPM6a and the intercellular cell adhesion molecule ICAM5 on neuronal morphogenesis.

The mechanisms underlying neuronal development and synaptic formation in the brain depend on intricate cellular and molecular processes. The neuronal membrane glycoprotein GPM6a promotes neurite elongation, filopodia/spine formation, and synapse development, yet its molecular mechanisms remain unknown. Since the extracellular domains of GPM6a (ECs) command its function, we investigated the interaction between ICAM5, the neuronal member of the intercellular adhesion molecule (ICAM) family, and GPM6a's ECs. Our study aimed to explore the functional relationship between GPM6a and ICAM5 in hippocampal culture neurons and cell lines. Immunostaining of 15 days in vitro (DIV) neurons revealed significant co-localization between endogenous GPM6a clusters and ICAM5 clusters in the dendritic shaft. These results were further corroborated by overexpressing GPM6a and ICAM5 in N2a cells and hippocampal neurons at 5 DIV. Moreover, results from the co-immunoprecipitations and cell aggregation assays prove the cis and trans interaction between both proteins in GPM6a/ICAM5 overexpressing HEK293 cells. Additionally, GPM6a and ICAM5 overexpression additively enhanced neurite length, the number of neurites in N2a cells, and filopodia formation in 5 DIV neurons, indicating their cooperative role. These findings highlight the dynamic association between GPM6a and ICAM5 during neuronal development, offering insights into their contributions to neurite outgrowth, filopodia formation, and cell-cell interactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neurochemistry
Journal of Neurochemistry 医学-神经科学
CiteScore
9.30
自引率
2.10%
发文量
181
审稿时长
2.2 months
期刊介绍: Journal of Neurochemistry focuses on molecular, cellular and biochemical aspects of the nervous system, the pathogenesis of neurological disorders and the development of disease specific biomarkers. It is devoted to the prompt publication of original findings of the highest scientific priority and value that provide novel mechanistic insights, represent a clear advance over previous studies and have the potential to generate exciting future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信