内生淀粉芽孢杆菌 MR4 的比较基因组分析:从野生药用植物根部组织中分离出的潜在生物控制剂。

IF 2 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Journal of Applied Genetics Pub Date : 2024-12-01 Epub Date: 2024-09-30 DOI:10.1007/s13353-024-00905-9
Kaiying Yang, Xianxing Dai, Zulihumar Maitikadir, Huijiang Zhang, Haiting Hao, Chengcai Yan
{"title":"内生淀粉芽孢杆菌 MR4 的比较基因组分析:从野生药用植物根部组织中分离出的潜在生物控制剂。","authors":"Kaiying Yang, Xianxing Dai, Zulihumar Maitikadir, Huijiang Zhang, Haiting Hao, Chengcai Yan","doi":"10.1007/s13353-024-00905-9","DOIUrl":null,"url":null,"abstract":"<p><p>In this investigation, 396 endophytic bacterial strains from six indigenous medicinal plant species within the Xinjiang Tumor Peak National Nature Reserve were subjected to screening. The strain MR4 emerged as a noteworthy contender, demonstrating pronounced biocontrol capabilities coupled with exceptional cold tolerance. Through morphological scrutiny and comprehensive genomic sequencing, MR4 was identified as Bacillus amyloliquefaciens. Antagonistic assays revealed MR4's efficacy in suppressing the causative agents of cotton wilt and verticillium wilt, achieving inhibition rates surpassing 50%. Analyses, underpinned by PCR methodologies, indicated MR4's capacity to biosynthesize a minimum of eight distinct antimicrobial agents. The whole-genome sequencing data indicated that B. amyloliquefaciens MR4 had the genome size and GC content of 4,017,872 bp and 47.14%, respectively, and 4191 coding genes were identified. The genome consists of a single chromosome and one plasmid. Moreover, it was augmented by annotations from various databases, including GO, KEGG, and COG. The pathogenicity of MR4 undergoes evaluation, while predictions concerning MR4's secondary metabolites have disclosed gene clusters for 13 varieties of these compounds, with particular emphasis on surfactins and fengycin. Comparative analyses with four paradigmatic strains shed light on MR4's genomic composition and its phylogenetic lineage within the Bacillus genus. The genomic data pertaining to MR4 have been duly submitted to the NCBI GenBank, bearing the accession numbers CP146236 (Chr1) and CP146237 (plas1). This study endeavors to furnish potent microbial resources for the biocontrol and enhancement of plant growth, thereby providing a theoretical groundwork for MR4's agronomic utilization.</p>","PeriodicalId":14891,"journal":{"name":"Journal of Applied Genetics","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561014/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparative genome analysis of endophytic Bacillus amyloliquefaciens MR4: a potential biocontrol agent isolated from wild medicinal plant root tissue.\",\"authors\":\"Kaiying Yang, Xianxing Dai, Zulihumar Maitikadir, Huijiang Zhang, Haiting Hao, Chengcai Yan\",\"doi\":\"10.1007/s13353-024-00905-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this investigation, 396 endophytic bacterial strains from six indigenous medicinal plant species within the Xinjiang Tumor Peak National Nature Reserve were subjected to screening. The strain MR4 emerged as a noteworthy contender, demonstrating pronounced biocontrol capabilities coupled with exceptional cold tolerance. Through morphological scrutiny and comprehensive genomic sequencing, MR4 was identified as Bacillus amyloliquefaciens. Antagonistic assays revealed MR4's efficacy in suppressing the causative agents of cotton wilt and verticillium wilt, achieving inhibition rates surpassing 50%. Analyses, underpinned by PCR methodologies, indicated MR4's capacity to biosynthesize a minimum of eight distinct antimicrobial agents. The whole-genome sequencing data indicated that B. amyloliquefaciens MR4 had the genome size and GC content of 4,017,872 bp and 47.14%, respectively, and 4191 coding genes were identified. The genome consists of a single chromosome and one plasmid. Moreover, it was augmented by annotations from various databases, including GO, KEGG, and COG. The pathogenicity of MR4 undergoes evaluation, while predictions concerning MR4's secondary metabolites have disclosed gene clusters for 13 varieties of these compounds, with particular emphasis on surfactins and fengycin. Comparative analyses with four paradigmatic strains shed light on MR4's genomic composition and its phylogenetic lineage within the Bacillus genus. The genomic data pertaining to MR4 have been duly submitted to the NCBI GenBank, bearing the accession numbers CP146236 (Chr1) and CP146237 (plas1). This study endeavors to furnish potent microbial resources for the biocontrol and enhancement of plant growth, thereby providing a theoretical groundwork for MR4's agronomic utilization.</p>\",\"PeriodicalId\":14891,\"journal\":{\"name\":\"Journal of Applied Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561014/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13353-024-00905-9\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13353-024-00905-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在这项调查中,对来自新疆土默峰国家级自然保护区内六种本地药用植物的 396 株内生细菌进行了筛选。菌株MR4表现出明显的生物防治能力和超强的耐寒性,成为值得关注的竞争者。通过形态学检查和全面的基因组测序,MR4 被鉴定为淀粉芽孢杆菌。拮抗试验显示,MR4 在抑制棉花枯萎病和轮纹枯萎病病原菌方面具有显著功效,抑制率超过 50%。以 PCR 方法为基础的分析表明,MR4 能够生物合成至少八种不同的抗菌剂。全基因组测序数据表明,淀粉芽孢杆菌 MR4 的基因组大小和 GC 含量分别为 4,017,872 bp 和 47.14%,共鉴定出 4191 个编码基因。基因组由一条染色体和一个质粒组成。此外,它还得到了来自各种数据库(包括 GO、KEGG 和 COG)的注释的补充。对 MR4 的致病性进行了评估,同时对 MR4 的次级代谢物进行了预测,发现了 13 种这些化合物的基因簇,其中特别强调了表面活性剂和芬吉素。与四个典型菌株的比较分析揭示了 MR4 的基因组组成及其在芽孢杆菌属中的系统发育系。有关 MR4 的基因组数据已正式提交给 NCBI GenBank,登录号为 CP146236(Chr1)和 CP146237(plas1)。这项研究旨在为生物防治和促进植物生长提供有效的微生物资源,从而为 MR4 的农艺应用提供理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative genome analysis of endophytic Bacillus amyloliquefaciens MR4: a potential biocontrol agent isolated from wild medicinal plant root tissue.

In this investigation, 396 endophytic bacterial strains from six indigenous medicinal plant species within the Xinjiang Tumor Peak National Nature Reserve were subjected to screening. The strain MR4 emerged as a noteworthy contender, demonstrating pronounced biocontrol capabilities coupled with exceptional cold tolerance. Through morphological scrutiny and comprehensive genomic sequencing, MR4 was identified as Bacillus amyloliquefaciens. Antagonistic assays revealed MR4's efficacy in suppressing the causative agents of cotton wilt and verticillium wilt, achieving inhibition rates surpassing 50%. Analyses, underpinned by PCR methodologies, indicated MR4's capacity to biosynthesize a minimum of eight distinct antimicrobial agents. The whole-genome sequencing data indicated that B. amyloliquefaciens MR4 had the genome size and GC content of 4,017,872 bp and 47.14%, respectively, and 4191 coding genes were identified. The genome consists of a single chromosome and one plasmid. Moreover, it was augmented by annotations from various databases, including GO, KEGG, and COG. The pathogenicity of MR4 undergoes evaluation, while predictions concerning MR4's secondary metabolites have disclosed gene clusters for 13 varieties of these compounds, with particular emphasis on surfactins and fengycin. Comparative analyses with four paradigmatic strains shed light on MR4's genomic composition and its phylogenetic lineage within the Bacillus genus. The genomic data pertaining to MR4 have been duly submitted to the NCBI GenBank, bearing the accession numbers CP146236 (Chr1) and CP146237 (plas1). This study endeavors to furnish potent microbial resources for the biocontrol and enhancement of plant growth, thereby providing a theoretical groundwork for MR4's agronomic utilization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Genetics
Journal of Applied Genetics 生物-生物工程与应用微生物
CiteScore
4.30
自引率
4.20%
发文量
62
审稿时长
6-12 weeks
期刊介绍: The Journal of Applied Genetics is an international journal on genetics and genomics. It publishes peer-reviewed original papers, short communications (including case reports) and review articles focused on the research of applicative aspects of plant, human, animal and microbial genetics and genomics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信