异构信息网络中用于药物-靶点相互作用预测的强化元路径优化。

IF 3.6 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Ben Xu, Jianping Chen, Yunzhe Wang, Qiming Fu, You Lu
{"title":"异构信息网络中用于药物-靶点相互作用预测的强化元路径优化。","authors":"Ben Xu, Jianping Chen, Yunzhe Wang, Qiming Fu, You Lu","doi":"10.1109/TCBB.2024.3467135","DOIUrl":null,"url":null,"abstract":"<p><p>Graph neural networks offer an effective avenue for predicting drug-target interactions. In this domain, researchers have found that constructing heterogeneous information networks based on metapaths using diverse biological datasets enhances prediction performance. However, the performance of such methods is closely tied to the selection of metapaths and the compatibility between metapath subgraphs and graph neural networks. Most existing approaches still rely on fixed strategies for selecting metapaths and often fail to fully exploit node information along the metapaths, limiting the improvement in model performance. This paper introduces a novel method for predicting drug-target interactions by optimizing metapaths in heterogeneous information networks. On one hand, the method formulates the metapath optimization problem as a Markov decision process, using the enhancement of downstream network performance as a reward signal. Through iterative training of a reinforcement learning agent, a high-quality set of metapaths is learned. On the other hand, to fully leverage node information along the metapaths, the paper constructs subgraphs based on nodes along the metapaths. Different depths of subgraphs are processed using different graph convolutional neural network. The proposed method is validated using standard heterogeneous biological benchmark datasets. Experimental results on standard datasets show significant advantages over traditional methods.</p>","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"PP ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforced Metapath Optimization in Heterogeneous Information Networks for Drug-Target Interaction Prediction.\",\"authors\":\"Ben Xu, Jianping Chen, Yunzhe Wang, Qiming Fu, You Lu\",\"doi\":\"10.1109/TCBB.2024.3467135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Graph neural networks offer an effective avenue for predicting drug-target interactions. In this domain, researchers have found that constructing heterogeneous information networks based on metapaths using diverse biological datasets enhances prediction performance. However, the performance of such methods is closely tied to the selection of metapaths and the compatibility between metapath subgraphs and graph neural networks. Most existing approaches still rely on fixed strategies for selecting metapaths and often fail to fully exploit node information along the metapaths, limiting the improvement in model performance. This paper introduces a novel method for predicting drug-target interactions by optimizing metapaths in heterogeneous information networks. On one hand, the method formulates the metapath optimization problem as a Markov decision process, using the enhancement of downstream network performance as a reward signal. Through iterative training of a reinforcement learning agent, a high-quality set of metapaths is learned. On the other hand, to fully leverage node information along the metapaths, the paper constructs subgraphs based on nodes along the metapaths. Different depths of subgraphs are processed using different graph convolutional neural network. The proposed method is validated using standard heterogeneous biological benchmark datasets. Experimental results on standard datasets show significant advantages over traditional methods.</p>\",\"PeriodicalId\":13344,\"journal\":{\"name\":\"IEEE/ACM Transactions on Computational Biology and Bioinformatics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM Transactions on Computational Biology and Bioinformatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TCBB.2024.3467135\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TCBB.2024.3467135","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

图神经网络为预测药物-靶点相互作用提供了有效途径。在这一领域,研究人员发现,利用不同的生物数据集构建基于元图谱的异构信息网络可以提高预测性能。然而,这些方法的性能与元图的选择以及元图子图和图神经网络之间的兼容性密切相关。现有的大多数方法仍然依赖于固定的元路径选择策略,往往不能充分利用元路径上的节点信息,从而限制了模型性能的提高。本文介绍了一种在异构信息网络中通过优化元径预测药物-靶点相互作用的新方法。一方面,该方法将元路径优化问题表述为马尔可夫决策过程,将下游网络性能的提升作为奖励信号。通过强化学习代理的迭代训练,可以学习到一组高质量的元路径。另一方面,为了充分利用元路径上的节点信息,本文根据元路径上的节点构建子图。使用不同的图卷积神经网络处理不同深度的子图。本文使用标准异构生物基准数据集对所提出的方法进行了验证。标准数据集上的实验结果表明,该方法与传统方法相比具有显著优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reinforced Metapath Optimization in Heterogeneous Information Networks for Drug-Target Interaction Prediction.

Graph neural networks offer an effective avenue for predicting drug-target interactions. In this domain, researchers have found that constructing heterogeneous information networks based on metapaths using diverse biological datasets enhances prediction performance. However, the performance of such methods is closely tied to the selection of metapaths and the compatibility between metapath subgraphs and graph neural networks. Most existing approaches still rely on fixed strategies for selecting metapaths and often fail to fully exploit node information along the metapaths, limiting the improvement in model performance. This paper introduces a novel method for predicting drug-target interactions by optimizing metapaths in heterogeneous information networks. On one hand, the method formulates the metapath optimization problem as a Markov decision process, using the enhancement of downstream network performance as a reward signal. Through iterative training of a reinforcement learning agent, a high-quality set of metapaths is learned. On the other hand, to fully leverage node information along the metapaths, the paper constructs subgraphs based on nodes along the metapaths. Different depths of subgraphs are processed using different graph convolutional neural network. The proposed method is validated using standard heterogeneous biological benchmark datasets. Experimental results on standard datasets show significant advantages over traditional methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
6.70%
发文量
479
审稿时长
3 months
期刊介绍: IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信