基于分区的灵活基因间重排距离算法

IF 3.6 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Gabriel Siqueira, Alexsandro Oliveira Alexandrino, Andre Rodrigues Oliveira, Geraldine Jean, Guillaume Fertin, Zanoni Dias
{"title":"基于分区的灵活基因间重排距离算法","authors":"Gabriel Siqueira, Alexsandro Oliveira Alexandrino, Andre Rodrigues Oliveira, Geraldine Jean, Guillaume Fertin, Zanoni Dias","doi":"10.1109/TCBB.2024.3467033","DOIUrl":null,"url":null,"abstract":"<p><p>Genome Rearrangement distance problems are used in Computational Biology to estimate the evolutionary distance between genomes. These problems consist of minimizing the number of rearrangement events necessary to transform one genome into another. Two commonly used rearrangement events are reversal and transposition. The first studied problems ignored nucleotides outside genes (called intergenic regions), or assumed that genomes have a single copy of each gene. Recent works made advancements in more general problems considering the number of nucleotides in intergenic regions, and replicated genes. Nevertheless, genomes tend to have wildly different quantities of nucleotides on their intergenic regions, which poses a problem when comparing these regions exactly. To overcome this limitation, our work considers some flexibility when matching intergenic regions that do not have the same number of nucleotides. We propose new problems seeking the minimum number of reversals, or reversals and transpositions, necessary to transform one genome into another, while considering flexible intergenic region information. We show approximations for these problems by exploring their relationship with the Signed Minimum Common Flexible Intergenic String Partition problem. We also present different heuristics for the partition problem, and conduct experimental tests on simulated genomes to assess the performance of our algorithms.</p>","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"PP ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partition Based Algorithms for Rearrangement Distances with Flexible Intergenic Regions.\",\"authors\":\"Gabriel Siqueira, Alexsandro Oliveira Alexandrino, Andre Rodrigues Oliveira, Geraldine Jean, Guillaume Fertin, Zanoni Dias\",\"doi\":\"10.1109/TCBB.2024.3467033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genome Rearrangement distance problems are used in Computational Biology to estimate the evolutionary distance between genomes. These problems consist of minimizing the number of rearrangement events necessary to transform one genome into another. Two commonly used rearrangement events are reversal and transposition. The first studied problems ignored nucleotides outside genes (called intergenic regions), or assumed that genomes have a single copy of each gene. Recent works made advancements in more general problems considering the number of nucleotides in intergenic regions, and replicated genes. Nevertheless, genomes tend to have wildly different quantities of nucleotides on their intergenic regions, which poses a problem when comparing these regions exactly. To overcome this limitation, our work considers some flexibility when matching intergenic regions that do not have the same number of nucleotides. We propose new problems seeking the minimum number of reversals, or reversals and transpositions, necessary to transform one genome into another, while considering flexible intergenic region information. We show approximations for these problems by exploring their relationship with the Signed Minimum Common Flexible Intergenic String Partition problem. We also present different heuristics for the partition problem, and conduct experimental tests on simulated genomes to assess the performance of our algorithms.</p>\",\"PeriodicalId\":13344,\"journal\":{\"name\":\"IEEE/ACM Transactions on Computational Biology and Bioinformatics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM Transactions on Computational Biology and Bioinformatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TCBB.2024.3467033\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TCBB.2024.3467033","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

基因组重排距离问题在计算生物学中用于估算基因组之间的进化距离。这些问题包括将一个基因组转化为另一个基因组所需的重排事件数量最小化。两种常用的重排事件是反转和转座。最初研究的问题忽略了基因外的核苷酸(称为基因间区),或假设基因组中每个基因只有一个拷贝。最近的研究在考虑基因间区核苷酸数量和复制基因等更一般的问题上取得了进展。然而,基因组在基因间区的核苷酸数量往往相差很大,这就给精确比较这些区域带来了问题。为了克服这一局限,我们的研究在匹配核苷酸数量不一致的基因间区时考虑了一定的灵活性。我们提出了新的问题,即在考虑灵活的基因间区域信息的同时,寻求将一个基因组转化为另一个基因组所需的最小反转或反转和转座次数。我们通过探讨这些问题与符号最小通用灵活基因间字符串分割问题的关系,展示了这些问题的近似值。我们还针对分割问题提出了不同的启发式算法,并在模拟基因组上进行了实验测试,以评估我们算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Partition Based Algorithms for Rearrangement Distances with Flexible Intergenic Regions.

Genome Rearrangement distance problems are used in Computational Biology to estimate the evolutionary distance between genomes. These problems consist of minimizing the number of rearrangement events necessary to transform one genome into another. Two commonly used rearrangement events are reversal and transposition. The first studied problems ignored nucleotides outside genes (called intergenic regions), or assumed that genomes have a single copy of each gene. Recent works made advancements in more general problems considering the number of nucleotides in intergenic regions, and replicated genes. Nevertheless, genomes tend to have wildly different quantities of nucleotides on their intergenic regions, which poses a problem when comparing these regions exactly. To overcome this limitation, our work considers some flexibility when matching intergenic regions that do not have the same number of nucleotides. We propose new problems seeking the minimum number of reversals, or reversals and transpositions, necessary to transform one genome into another, while considering flexible intergenic region information. We show approximations for these problems by exploring their relationship with the Signed Minimum Common Flexible Intergenic String Partition problem. We also present different heuristics for the partition problem, and conduct experimental tests on simulated genomes to assess the performance of our algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
6.70%
发文量
479
审稿时长
3 months
期刊介绍: IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信