Yuyang Xu;Jingbo Zhou;Haochao Ying;Jintai Chen;Wei Chen;Danny Z. Chen;Jian Wu
{"title":"用于零注射药物靶点相互作用预测的蛋白质-上下文增强型主从框架。","authors":"Yuyang Xu;Jingbo Zhou;Haochao Ying;Jintai Chen;Wei Chen;Danny Z. Chen;Jian Wu","doi":"10.1109/TCBB.2024.3468434","DOIUrl":null,"url":null,"abstract":"Drug Target Interaction (DTI) prediction plays a crucial role in in-silico drug discovery, especially for deep learning (DL) models. Along this line, existing methods usually first extract features from drugs and target proteins, and use drug-target pairs to train DL models. However, these DL-based methods essentially rely on similar structures and patterns defined by the homologous proteins from a large amount of data. When few drug-target interactions are known for a newly discovered protein and its homologous proteins, prediction performance can suffer notable reduction. In this paper, we propose a novel Protein-Context enhanced Master/Slave Framework (PCMS), for zero-shot DTI prediction. This framework facilitates the efficient discovery of ligands for newly discovered target proteins, addressing the challenge of predicting interactions without prior data. Specifically, the PCMS framework consists of two main components: a Master Learner and a Slave Learner. The Master Learner first learns the target protein context information, and then adaptively generates the corresponding parameters for the Slave Learner. The Slave Learner then perform zero-shot DTI prediction in different protein contexts. Extensive experiments verify the effectiveness of our PCMS compared to state-of-the-art methods in various metrics on two public datasets.","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"21 6","pages":"2359-2370"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Protein-Context Enhanced Master Slave Framework for Zero-Shot Drug Target Interaction Prediction\",\"authors\":\"Yuyang Xu;Jingbo Zhou;Haochao Ying;Jintai Chen;Wei Chen;Danny Z. Chen;Jian Wu\",\"doi\":\"10.1109/TCBB.2024.3468434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drug Target Interaction (DTI) prediction plays a crucial role in in-silico drug discovery, especially for deep learning (DL) models. Along this line, existing methods usually first extract features from drugs and target proteins, and use drug-target pairs to train DL models. However, these DL-based methods essentially rely on similar structures and patterns defined by the homologous proteins from a large amount of data. When few drug-target interactions are known for a newly discovered protein and its homologous proteins, prediction performance can suffer notable reduction. In this paper, we propose a novel Protein-Context enhanced Master/Slave Framework (PCMS), for zero-shot DTI prediction. This framework facilitates the efficient discovery of ligands for newly discovered target proteins, addressing the challenge of predicting interactions without prior data. Specifically, the PCMS framework consists of two main components: a Master Learner and a Slave Learner. The Master Learner first learns the target protein context information, and then adaptively generates the corresponding parameters for the Slave Learner. The Slave Learner then perform zero-shot DTI prediction in different protein contexts. Extensive experiments verify the effectiveness of our PCMS compared to state-of-the-art methods in various metrics on two public datasets.\",\"PeriodicalId\":13344,\"journal\":{\"name\":\"IEEE/ACM Transactions on Computational Biology and Bioinformatics\",\"volume\":\"21 6\",\"pages\":\"2359-2370\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM Transactions on Computational Biology and Bioinformatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10697392/\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10697392/","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A Protein-Context Enhanced Master Slave Framework for Zero-Shot Drug Target Interaction Prediction
Drug Target Interaction (DTI) prediction plays a crucial role in in-silico drug discovery, especially for deep learning (DL) models. Along this line, existing methods usually first extract features from drugs and target proteins, and use drug-target pairs to train DL models. However, these DL-based methods essentially rely on similar structures and patterns defined by the homologous proteins from a large amount of data. When few drug-target interactions are known for a newly discovered protein and its homologous proteins, prediction performance can suffer notable reduction. In this paper, we propose a novel Protein-Context enhanced Master/Slave Framework (PCMS), for zero-shot DTI prediction. This framework facilitates the efficient discovery of ligands for newly discovered target proteins, addressing the challenge of predicting interactions without prior data. Specifically, the PCMS framework consists of two main components: a Master Learner and a Slave Learner. The Master Learner first learns the target protein context information, and then adaptively generates the corresponding parameters for the Slave Learner. The Slave Learner then perform zero-shot DTI prediction in different protein contexts. Extensive experiments verify the effectiveness of our PCMS compared to state-of-the-art methods in various metrics on two public datasets.
期刊介绍:
IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system