超越随机对照试验,评估不同目标人群的治疗效果异质性。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
David G Lugo-Palacios, Patrick Bidulka, Stephen O'Neill, Orlagh Carroll, Anirban Basu, Amanda Adler, Karla DíazOrdaz, Andrew Briggs, Richard Grieve
{"title":"超越随机对照试验,评估不同目标人群的治疗效果异质性。","authors":"David G Lugo-Palacios, Patrick Bidulka, Stephen O'Neill, Orlagh Carroll, Anirban Basu, Amanda Adler, Karla DíazOrdaz, Andrew Briggs, Richard Grieve","doi":"10.1002/hec.4903","DOIUrl":null,"url":null,"abstract":"<p><p>Methods have been developed for transporting evidence from randomised controlled trials (RCTs) to target populations. However, these approaches allow only for differences in characteristics observed in the RCT and real-world data (overt heterogeneity). These approaches do not recognise heterogeneity of treatment effects (HTE) according to unmeasured characteristics (essential heterogeneity). We use a target trial design and apply a local instrumental variable (LIV) approach to electronic health records from the Clinical Practice Research Datalink, and examine both forms of heterogeneity in assessing the comparative effectiveness of two second-line treatments for type 2 diabetes mellitus. We first estimate individualised estimates of HTE across the entire target population defined by applying eligibility criteria from national guidelines (n = 13,240) within an overall target trial framework. We define a subpopulation who meet a published RCT's eligibility criteria ('RCT-eligible', n = 6497), and a subpopulation who do not ('RCT-ineligible', n = 6743). We compare average treatment effects for pre-specified subgroups within the RCT-eligible subpopulation, the RCT-ineligible subpopulation, and within the overall target population. We find differences across these subpopulations in the magnitude of subgroup-level treatment effects, but that the direction of estimated effects is stable. Our results highlight that LIV methods can provide useful evidence about treatment effect heterogeneity including for those subpopulations excluded from RCTs.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Going beyond randomised controlled trials to assess treatment effect heterogeneity across target populations.\",\"authors\":\"David G Lugo-Palacios, Patrick Bidulka, Stephen O'Neill, Orlagh Carroll, Anirban Basu, Amanda Adler, Karla DíazOrdaz, Andrew Briggs, Richard Grieve\",\"doi\":\"10.1002/hec.4903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Methods have been developed for transporting evidence from randomised controlled trials (RCTs) to target populations. However, these approaches allow only for differences in characteristics observed in the RCT and real-world data (overt heterogeneity). These approaches do not recognise heterogeneity of treatment effects (HTE) according to unmeasured characteristics (essential heterogeneity). We use a target trial design and apply a local instrumental variable (LIV) approach to electronic health records from the Clinical Practice Research Datalink, and examine both forms of heterogeneity in assessing the comparative effectiveness of two second-line treatments for type 2 diabetes mellitus. We first estimate individualised estimates of HTE across the entire target population defined by applying eligibility criteria from national guidelines (n = 13,240) within an overall target trial framework. We define a subpopulation who meet a published RCT's eligibility criteria ('RCT-eligible', n = 6497), and a subpopulation who do not ('RCT-ineligible', n = 6743). We compare average treatment effects for pre-specified subgroups within the RCT-eligible subpopulation, the RCT-ineligible subpopulation, and within the overall target population. We find differences across these subpopulations in the magnitude of subgroup-level treatment effects, but that the direction of estimated effects is stable. Our results highlight that LIV methods can provide useful evidence about treatment effect heterogeneity including for those subpopulations excluded from RCTs.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/hec.4903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/hec.4903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

目前已开发出将证据从随机对照试验(RCT)转移到目标人群的方法。然而,这些方法只考虑到随机对照试验和真实世界数据中观察到的特征差异(明显异质性)。这些方法无法识别根据未测量特征而产生的治疗效果异质性(HTE)(基本异质性)。我们采用目标试验设计,将局部工具变量(LIV)方法应用于临床实践研究数据链(Clinical Practice Research Datalink)的电子健康记录,并在评估 2 型糖尿病两种二线治疗方法的比较效果时考察了这两种形式的异质性。我们首先在总体目标试验框架内,通过应用国家指南中的资格标准(n = 13,240)来估算整个目标人群的 HTE 个性化估算值。我们定义了符合已发表 RCT 资格标准的子人群("符合 RCT 标准",n = 6497)和不符合 RCT 标准的子人群("不符合 RCT 标准",n = 6743)。我们比较了符合 RCT 条件的亚群、不符合 RCT 条件的亚群以及总体目标人群中预先指定的亚群的平均治疗效果。我们发现,在这些亚群中,亚群级治疗效果的大小存在差异,但估计效果的方向是稳定的。我们的结果突出表明,LIV 方法可以为治疗效果的异质性提供有用的证据,包括那些被排除在 RCT 之外的亚人群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Going beyond randomised controlled trials to assess treatment effect heterogeneity across target populations.

Methods have been developed for transporting evidence from randomised controlled trials (RCTs) to target populations. However, these approaches allow only for differences in characteristics observed in the RCT and real-world data (overt heterogeneity). These approaches do not recognise heterogeneity of treatment effects (HTE) according to unmeasured characteristics (essential heterogeneity). We use a target trial design and apply a local instrumental variable (LIV) approach to electronic health records from the Clinical Practice Research Datalink, and examine both forms of heterogeneity in assessing the comparative effectiveness of two second-line treatments for type 2 diabetes mellitus. We first estimate individualised estimates of HTE across the entire target population defined by applying eligibility criteria from national guidelines (n = 13,240) within an overall target trial framework. We define a subpopulation who meet a published RCT's eligibility criteria ('RCT-eligible', n = 6497), and a subpopulation who do not ('RCT-ineligible', n = 6743). We compare average treatment effects for pre-specified subgroups within the RCT-eligible subpopulation, the RCT-ineligible subpopulation, and within the overall target population. We find differences across these subpopulations in the magnitude of subgroup-level treatment effects, but that the direction of estimated effects is stable. Our results highlight that LIV methods can provide useful evidence about treatment effect heterogeneity including for those subpopulations excluded from RCTs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信